Open Access and Peer-reviewed
Home Journal Issues Guide for Authors Editorial Board Aims & Scope About Journal News & Announcements


Research Article 


Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.

S. Jeya, Dr. L. Sankari.

Abstract
Precise prediction by deep learning algorithms will help regulate the pollutant PM2.5 (particulate matter, inhalable particles with diameter 2.5Ám micrometres or smaller) a global threat to the entire environment by adulterating the air causing respiratory, cardiovascular, numerous other diseases and long term exposure to the pollutantin turn leads to human mortality in the globe. A combination of both 1D CNN and BIGRU model used to forecast the menacing pollutant PM2.5. For extemporizing proposed model accuracy, precise choice of hyper parameter selection is inevitable. Hyper parameters of ID CNN and BIGRU are automatically selected by a novel Adaptive kernel fuzzy weighted particle swarm optimization (AKFWPSO).Both PM2.5 and meteorological hourly data set of Beijing from UCI Machine learning repository is exploited for this analysis. For measuring model performance three measurement approaches such as RMSE, MAE and SMAPE are used. The model accuracy is considered superior comparing theexisting model with estimation of error metrics.This model can be applied not only to oversee and regulate the PM2.5but also alert the public when the amount of the pollutant level goes beyond the level prescribed.

Key words: Adaptive kernel fuzzy weighted particle swarm optimization, 1D Convolutional Neural Network, Bidirectional Gated Recurrent Unit, Particulate Matter (PM2.5)


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by S. Jeya
Articles by Dr. L. Sankari
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

S. Jeya, Dr. L. Sankari. Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. EEO. 2021; 20(5): 12-23. doi:doi: 10.17051/ilkonline.2021.05.01


Web Style

S. Jeya, Dr. L. Sankari. Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. http://ilkogretim-online.org//?mno=53969 [Access: April 09, 2021]. doi:doi: 10.17051/ilkonline.2021.05.01


AMA (American Medical Association) Style

S. Jeya, Dr. L. Sankari. Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. EEO. 2021; 20(5): 12-23. doi:doi: 10.17051/ilkonline.2021.05.01



Vancouver/ICMJE Style

S. Jeya, Dr. L. Sankari. Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. EEO. (2021), [cited April 09, 2021]; 20(5): 12-23. doi:doi: 10.17051/ilkonline.2021.05.01



Harvard Style

S. Jeya, Dr. L. Sankari (2021) Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. EEO, 20 (5), 12-23. doi:doi: 10.17051/ilkonline.2021.05.01



Turabian Style

S. Jeya, Dr. L. Sankari. 2021. Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. Elementary Education Online, 20 (5), 12-23. doi:doi: 10.17051/ilkonline.2021.05.01



Chicago Style

S. Jeya, Dr. L. Sankari. "Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.." Elementary Education Online 20 (2021), 12-23. doi:doi: 10.17051/ilkonline.2021.05.01



MLA (The Modern Language Association) Style

S. Jeya, Dr. L. Sankari. "Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.." Elementary Education Online 20.5 (2021), 12-23. Print. doi:doi: 10.17051/ilkonline.2021.05.01



APA (American Psychological Association) Style

S. Jeya, Dr. L. Sankari (2021) Adaptive kernel fuzzy weighted particle swarm optimized deep learning model to predict air pollution PM2.5.. Elementary Education Online, 20 (5), 12-23. doi:doi: 10.17051/ilkonline.2021.05.01








AUTHOR LOGIN

REVIEWER LOGIN

Indexed
&
Abstracted


Indexing

Ţlkö­retim Online (IOO) - Elementary Education Online (EEO) is indexed in:


ABOUT JOURNAL
POLICIES
STATEMENTS