Open Access and Peer-reviewed
Home Journal Issues Guide for Authors Editorial Board Aims & Scope About Journal News & Announcements


Research Article 


Study of hierarchical learning and properties of convolution layer using sign language recognition model

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima.

Abstract
Convolution Neural Network (CNN) as a technique improves research minds to overcome the challenges of handcrafted feature extraction and classification. CNN be a part of the representation learning methods in deep learning architecture to discover the representation needed for detection and classification automatically. So far this technique has been thought as “black boxes”, meaning that their inner working principles are mysterious and inscrutable. In order to understand the internal behavior of CNN, a model is developed on sign language recognition with 99.81%, 94.69%, 92.60% accuracy in train, test, and validation. While developing a model the inner principles of automatic feature extraction and the unique properties of convolution operations available in hierarchical CNN architecture are also learned. CNN is a multilayered network leading to feature learning and classification, it is necessary to understand how the features are learned from each layer and how it is transformed and fed into the next higher level layers without any human interventions.

Key words: deep learning, convolution neural network, kernel, sparse connection, parameter sharing.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Sagaya Mary J
Articles by Nachamai M
Articles by Dr. M. Vijayakumar
Articles by Dr. Chandra J
Articles by Dr. Ravi Teja Bhima
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. Study of hierarchical learning and properties of convolution layer using sign language recognition model . EEO. 2021; 20(5): 1118-1127. doi:10.17051/ilkonline.2021.05.121


Web Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. Study of hierarchical learning and properties of convolution layer using sign language recognition model . http://ilkogretim-online.org//?mno=56697 [Access: April 09, 2021]. doi:10.17051/ilkonline.2021.05.121


AMA (American Medical Association) Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. Study of hierarchical learning and properties of convolution layer using sign language recognition model . EEO. 2021; 20(5): 1118-1127. doi:10.17051/ilkonline.2021.05.121



Vancouver/ICMJE Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. Study of hierarchical learning and properties of convolution layer using sign language recognition model . EEO. (2021), [cited April 09, 2021]; 20(5): 1118-1127. doi:10.17051/ilkonline.2021.05.121



Harvard Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima (2021) Study of hierarchical learning and properties of convolution layer using sign language recognition model . EEO, 20 (5), 1118-1127. doi:10.17051/ilkonline.2021.05.121



Turabian Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. 2021. Study of hierarchical learning and properties of convolution layer using sign language recognition model . Elementary Education Online, 20 (5), 1118-1127. doi:10.17051/ilkonline.2021.05.121



Chicago Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. "Study of hierarchical learning and properties of convolution layer using sign language recognition model ." Elementary Education Online 20 (2021), 1118-1127. doi:10.17051/ilkonline.2021.05.121



MLA (The Modern Language Association) Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima. "Study of hierarchical learning and properties of convolution layer using sign language recognition model ." Elementary Education Online 20.5 (2021), 1118-1127. Print. doi:10.17051/ilkonline.2021.05.121



APA (American Psychological Association) Style

Sagaya Mary J, Nachamai M, Dr. M. Vijayakumar, Dr. Chandra J, Dr. Ravi Teja Bhima (2021) Study of hierarchical learning and properties of convolution layer using sign language recognition model . Elementary Education Online, 20 (5), 1118-1127. doi:10.17051/ilkonline.2021.05.121








AUTHOR LOGIN

REVIEWER LOGIN

Indexed
&
Abstracted


Indexing

Ýlköðretim Online (IOO) - Elementary Education Online (EEO) is indexed in:


ABOUT JOURNAL
POLICIES
STATEMENTS