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Abstract: Real-time systems such as industrial robots and autonomous navigation vehicles integrate a 

wide range of algorithms to achieve their functional behavior. In certain systems, these algorithms are 

deployed on dedicated single-core hardware plat- forms that exchange information over a real-time 

network. With the availability of current multi-core platforms, there is growing interest in an integrated 

architecture where these algorithms can run on a shared hardware platform. In addition, the benefits of 

virtualization-based cloud and fog architectures for non-real-time applications have prompted 

discussions about the possibility of achieving similar benefits for real-time systems. Although many useful 

solutions such as resource reservations and hierarchical scheduling have been proposed to facilitate 

hardware virtualization for real-time applications, the current state of the art is mainly concerned with 

applications whose timing requirements can be modelled according to the periodic or the sporadic task 

model. Since the computational demand of many real-time algorithms can be flexibly adjusted at runtime, 

e.g., by changing the periods, they can be better abstracted with the elastic task model in the context of 

virtualized hardware platforms. Therefore, in this paper, scheduling framework with reservations based 

on periodic resource supply for real-time elastic applications with single-core workloads has been 

proposed, and then extend this solution for applications with multi-core workloads where reservations are 

based on the minimum-parallelism model. Since many existing applications run on dedicated single-core 

platforms, simultaneously provided a systematic methodology for migrating an existing real- time 

software application from a single-core to a multi- core platform. In doing so, focused on recovering the 

architecture of the existing software and transforming it for implementation on a multi-core platform. 

Next, explored the advantages of a fog-based architecture over an existing robot control architecture and 

identify the key research challenges that must be addressed for the adoption of the fog computing 

architecture. 

functions to hardware resources is accomplished at design time. While this approach allows software 

performance to be optimized on the assigned hardware resources, it limits the ability to provide 

continuous improvements to users. 

 

Keywords: Real time systems, Multicore platforms, Singlecore platforms, Fog computing architechture. 

 

          Introduction 

The mapping of software functions to hardware resources in many real-time sys- tems follows a 

distributed model in which system functionality is executed on a network of dedicated hardware 
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devices and the mapping of software. 

In the form of software upgrades, which is typically possible with cloud-based systems. However, the 

unpredictable communication latencies associated with cloud computing prevent the direct 

deployment of cloud- based architectures for real-time systems. Fog computing [1], on the other hand, 

complements the cloud computing model [2] by bringing additional computing infrastructure 

geographically closer to the users. This architecture aims to meet the needs of latency-sensitive, real-

time applications by reducing communication delays and providing the potential benefits of cloud 

computing, such as on-demand resource availability, to real-time systems that have long run their 

software on their own hardware. 

However, migrating existing real-time systems designed 

for optimal perfor- mance on dedicated hardware resources to a fog-based infrastructure is a non- 

trivial undertaking. In particular, the fog infrastructure is assumed to consist of multi-core computing 

systems that are virtualized and shared among unrelated applications. Existing systems, on the other 

hand, are designed to run on single- processor hardware that is entirely dedicated to the application. 

In addition, current state-of-the-art solutions such as reservation-based hierarchical scheduling [3] 

that address the resource allocation problem in virtualized systems assume that application 

workloads can be specified according to the sporadic or periodic task model. However, many real-

time systems such as industrial robots and autonomous vehicles integrate a wide range of algorithms 

that have different computational requirements depending on the state of their operating 

environment. In the case of autonomous driving software, execution times for different functions such 

as perception and planning have been shown to vary significantly [4]. In an industrial robot, it has 

been  

shown that periods of some tasks were dynamically adjusted while still achieving control goals [5]. 

The need to adjust the frequency of some tasks of a mobile robot to respond to dynamically changing 

environments of the robot was highlighted in [6]. In some scenarios, variability can be capped and the 

computational demand of the application can be modeled as a periodic or sporadic set of tasks while 

maintaining schedulability on a high-performance computing system. For some applications, it may 

not be possible to meet the requirements without overloading the resources. In such cases, it may be 

more appropriate to consider mode- based schedulability techniques [7, 8, 9]. In scenarios where such 

an approach is not possible, e.g., because it is difficult to define different modes, or when schedulability 

cannot be guaranteed for a specific mode. 

 

However, migrating existing real-time systems designed 

for optimal perfor- mance on dedicated hardware resources to a fog-based infrastructure is a non- 

trivial undertaking. In particular, the fog infrastructure is assumed to consist of multi-core computing 

systems that are virtualized and shared among unrelated applications. Existing systems, on the other 

hand, are designed to run on single- processor hardware that is entirely dedicated to the application. 

In addition, current state-of-the-art solutions such as reservation-based hierarchical scheduling [3] 

that address the resource allocation problem in virtualized systems assume that application 

workloads can be specified according to the sporadic or periodic task model. However, many real-

time systems such as industrial robots and autonomous vehicles integrate a wide range of algorithms 
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that have different computational requirements depending on the state of their operating 

environment. In the case of autonomous driving software, execution times for different functions such 

as perception and planning have been shown to vary significantly [4]. In an industrial robot, it has 

been shown that periods of some tasks were dynamically adjusted while still achieving control goals 

[5]. The need to adjust the frequency of some tasks of a mobile robot to respond to dynamically 

changing environments of the robot was highlighted in [6]. In some scenarios, variability can be 

capped and the computational demand of the application can be modeled as a periodic or sporadic set 

of tasks while maintaining schedulability on a high-performance computing system. For some 

applications, it may not be possible to meet the requirements without overloading the resources. In 

such cases, it may be more appropriate to consider mode- based schedulability techniques [7, 8, 9]. In 

scenarios where such an approach is not possible, e.g., because it is difficult to define different modes, 

or when schedulability cannot be guaranteed for a specific mode due to insufficient computational 

resources, it may be necessary to introduce some form of overload management techniques [10, 11], 

where the computational demand is adjusted at runtime to keep the application schedulable. 

Concretely, the work in this thesis extends current techniques for integrat- ing real-time applications on a 

shared hardware platform through a hierarchical scheduling framework [3], where the application is 

encapsulated in a reservation server and uses the elastic task compression algorithms for overload 

manage- ment 

[12] within the reservation. The framework proposes the use of the periodic resource supply reservation 

[13] for applications whose workload does not exceed that of a single core, and the minimum parallelism 

resource supply form [14, 15] combined with the periodic resource supply model for applications with 

multipro- cessor workload. Concurrently, since there are considerable differences between the existing 

deployment model utilizing the single-core hardware platforms and the multi-core hardware platforms of 

fog computing, we provide a systematic methodology to support the transformation of single-core 

software systems into multi-core software systems, focusing on the recovery of the architecture of the 

existing software system. Furthermore, we propose a fog-based architecture for an industrial robot 

control software, compare it with an existing architecture of the control, and identify some of the research 

challenges that need to be solved for the deployment of the fog architecture in practice. 

 

I. Background 

This chapter provides an overview of the relevant background and work related to the contributions of 

the thesis. 

 

A. Real-Time Systems 

Real-time systems are characterized by the presence of some software functions where the computed 

results are useful only if they are available within certain time intervals [16]. To ensure the correctness of 

such functions (called tasks), it is nec- essary to estimate their computational demand and to provide 

adequate resources during the required time intervals. Resources can be provisioned based on worst- case 

computational demand or on probabilistic and average-case requirements [16]. The computational 

demand is usually expressed in terms of the execution time, i.e., the time required for the task to execute 

on a processor, and the minimum interval between two successive instances of a task (also referred to as 

a period). The execution time of a task is estimated using timing analysis techniques [17] and the period 



 

2431 | SHAHBAZ HUSSAIN          Advanced Computational Elasticity For Real-Time Systems In Fog 

is usually defined at design time. A scheduling strategy then allocates computational resources among the 

various tasks to meet the timing requirements. 

 

B. Dynamic Computational Demand 

Many real-time algorithms have computational demand that varies depending on their operating 

environment. The variability can be observed both in the execution times as well as in the periodicity 

of the tasks. For example, the execution time variability can be due to the different conditional 

branches in the code triggered by external events and the period variability can be due to different 

control laws. Mode-based analysis [7, 8, 9] is an approach to provision resources in systems with 

dynamic computational demand. In this approach, each mode can be defined by a specific set of tasks. 

When tasks exist in different modes, they can be distinguished by different execution times and 

periods. Schedulability is then evaluated for each mode as well as for the transition intervals. For 

systems where such an approach is not possible, e.g., because it is difficult to define different modes, 

or when schedulability within a mode cannot be guaranteed due to insufficient computational 

resources, it may be necessary to introduce some form of overload management to maintain the 

schedulability of the application [10, 11]. 

 

         The Elastic Task Model 

The elastic task model and associated workload modification algorithms [10, 12] provide an approach 

for dealing with overload situations in real-time systems. This model captures dynamic variability by 

allowing task parameters to be specified as a range of values rather than a single value as in the 

periodic and sporadic task models. It assumes that task parameters, such as the period and/or 

execution time, can be changed at runtime to any value within the predefined range. An additional 

parameter, the elastic coefficient, is associated with each task to indicate the relative flexibility of the 

task to changes in its timing parameters. At runtime, the workload modification algorithms attempt 

to keep the application schedulable by updating the timing parameters to be as close as possible to 

the desired values. In this work, we assume that real-time algorithms with dynamic computational 

requirements can be modeled according to this elastic task model. 

  

         Reservation Servers 

In addition to overload management, resource provisioning approaches should also provide 

mechanisms to manage overruns and ensure temporal isolation. A task overrun occurs when the 

actual execution time exceeds the estimated worst-case execution times or when the the actual arrival 

times of consecutive instance of a task is less than the specified minimum inter-arrival time. In [11], 

the authors define temporal isolation/protection as: 

 

The property of temporal protection requires that the temporal behav- ior of one task not be affected 

by the temporal behavior of the other tasks running in the system. 

Reservation servers manage overruns by allocating a fixed amount of compu- tation time (called 

budget) to a task during certain time intervals (called a server period) to provide temporal isolation. 
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Reservation servers allow each task to run for the duration of its budget within a server period. If a 

task has not completed 

 

 

 

Fig. 2.1. Adaptive Reservation Architecture from [18, 19]. 

its execution at the end of its budget, it is blocked until the next server period. If a task is released 

before the end of its minimum inter-arrival time, it will not be processed until the start of its next server 

period. This approach ensures that tasks that violate their timing specifications do not affect the 

temporal behavior of other tasks in the system [11]. For applications with dynamic computational 

demand, static allocation of budget and the period may not meet the performance needs of applications 

with dynamic computational demands[18]. 

 

          Adaptive Reservation Servers 

Adaptive reservation schemes address the needs of applications with dynamic computational demands 

by adjusting the budget allocated to a task at runtime. These schemes include a control mechanism that 

takes into account the spare capacity in the system and takes task execution times as feedback to 

change the budget assigned to a task[19, 18]. Fig.2.1 shows a general architecture of the adaptive 

reservation schemes based on the solutions in [19, 18]. Here, each task is assigned a reservation server 

and is connected to a controller that receives as input a scheduling error parameter (see [19]). The 

controller requests new reservation bandwidths to minimize the associated task’s scheduling error. A 

system-level resource manager takes the controller’s output and updates the reservation param- eters 

of the reservations in a way that minimizes the scheduling error and ensures schedulability of the 

changed reservations. 

 

          Fog Computing Platforms 

Fog computing can be viewed as an extension of the cloud computing model, sharing its key 

characteristics, such as on-demand self-service, broad network access, resource pooling, rapid 

elasticity, and measured service [2]. Additionally, it addresses the needs of latency- sensitive 

applications by allocating them on geographically closer resources to reduce communication latencies. 

The fog computing model envisions provisioning resources in hierarchical intermediate layers, where 

applications with shorter latencies are deployed on resources closer to the user and those that can 

tolerate longer latencies are deployed on resources in distant layers[20]. The resources in these 
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intermediate layers are provided by hardware devices called Fog Computing Platforms or Fog Nodes. 

Within a fog network, fog nodes can range from high- performance multi-core platforms with hardware 

accelerators to resource-constrained single-core processors. To support a multi-tenant model, these 

fog nodes are assumed to provide access to their resources via hypervisors [1, 21] or container-based 

approaches [22, 23, 24]. Processing resources can be allocated to applications through reservation-

based hierarchical scheduling (see Section. 2.3). 

 

          Hierarchical Scheduling 

 

Hierarchical scheduling [25, 26] is a reservation-based scheduling approach that allocates processing 

resources for each application according to its reservation parameters. It supports the fog computing 

characteristics of multi-tenancy by sharing the physical resources among different applications. 

When an application’s reservation server is scheduled, the application’s local scheduler selects the 

task to run on the processing resource. For example, in a fog computing platform with hypervisor-

based virtualization, the hypervisor scheduler selects the operating system to run on a processor at 

any given time, while the operating system scheduler decides which of its tasks to run on the 

processor. In this framework, the reservation parameters are defined taking into account all the tasks 

of the application, as opposed to the one-to-one allocation in single-level scheduling, where each task 

is assigned its own reservation. This approach also ensures temporal isolation between unrelated 

applications and limits any overruns to those applications that violate the resource demand 

assumptions, rather than propagating the impact to all the applications running on the shared 

resource. The current state of the art in hierarchical scheduling approaches mainly deals with 

applications whose resource demand can be specified according to the periodic and sporadic task 

model. Applications with multiple modes and varying computational demands are managed by 

changing resource reservations and ensuring their schedulability during transition intervals [9, 27, 

28]. In cases where sufficient spare capacity is available, the bandwidth changes can be made without 

affecting the performance of concurrently running applications or alternatively, by taking into 

account their quality-of-service requirements [29]. An alternative mechanism to manage varying 

computational demand is to adjust the timing parameters of an application without changing the 

reservation parameters. Hierarchical adaptive reservation systems have been proposed in [30, 31] 

for applications with distinct modes. The goal of these solutions is to change the reservation 

parameters so that all applications sharing the resource can run in optimal modes by considering 

the computational needs of all applications. In this thesis, we extend this idea to support applications 

that do not have distinct modes, but rather are specified according to the elastic task model to enable 

the execution of such applications in a fog- computing environment. 

 

           Legacy Software Systems 

 

The software of many existing real-time systems is constantly evolving to improve performance or 

introduce new features to meet user needs[32]. However, the software evolution has mostly focused on 

single-core hardware platforms. The computational capacities offered by these platforms may not be 

sufficient to inte- grate additional functions or computationally intensive algorithms. This can be 
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addressed by considering multi-core hardware platforms and new architectural paradigms such as fog 

computing. Developing new software from scratch for multi-core and fog computing platforms may not 

be economical, so reusing the existing code may be a better option [33]. However, these legacy systems 

suffer from issues such as lack of documentation[34] that hinder the understanding of the system’s 

behavior. Moreover, the differences between single- core and multi-core platforms in terms of caches, 

memory buses, scheduling algorithms and data syn- chronization strategies make the migration process 

considerably complex. In this thesis, we provide a systematic migration methodology that focuses on 

architecture recovery and transformation to enable reuse of existing code. 

 

II. Related Work 

Hierarchical Scheduling 

In a hierarchical scheduling framework, the computational needs of an application are abstracted by a 

single interface that specifies the computational time to be 

reserved along with the time period in which it should be provisioned [13]. The reserved computing time 

can be made available to the application through various reservation servers such as the periodic server 

and the deferrable server [35]. The mechanisms for defining such an interface and the schedulability tests 

vary depending on the scheduling strategies used for both local and global schedulers. 

[53] For single-processor systems, Davis and Burns [35] 

provided an exact schedu- lability test for a hierarchical system with fixed-priority preemptive schedulers 

(FP) for both local and global scheduling. They evaluated the schedulability under periodic servers, 

sporadic servers, and deferrable servers and showed that the periodic servers provide better 

schedulability compared to the deferrable and the sporadic server models. Similarly, Zhang and Burns 

[36] provided schedulability analysis for a system with the earliest deadline first (EDF) policy as the local 

scheduling policy, and either FP or EDF as the global scheduling policy. Mok and Alex [37] proposed the 

regularity-based resource supply model and provided schedulability conditions for applications where 

either FP or EDF was used as the local scheduler. Shin and Lee [38] proposed the periodic resource supply 

model to define the guaranteed resource time to be provided to an application along with the 

schedulability tests when FP or EDF is used as the local scheduling policy. Easwaran et al [39] generalized 

the periodic resource model and provided methods to generate the optimal bandwidth interfaces and 

improve resource utiliza- tion. Dewan and Fisher [40, 41] proposed an algorithm to determine the optimal 

server parameters for the periodic resource model while Kim et al. [42] proposed a method to reduce the 

overhead associated with the periodic resource model. Yang and Dong. [43] considered scheduling of 

mixed criticality tasks within a periodic resource model where each resource supply reservation had 

multiple bandwidth estimates. 

[54] For multiprocessor reservations, Leontyev and Anderson proposed the minimum-parallelism 

supply model to schedule soft real-time [14]. Yang and Anderson [15] provided conditions to preserve the 

optimality of the minimum- parallelism supply model for hard real-time tasks. Easwaran et al. [44] 

extended the periodic resource model with an additional parameter that specifies the max- imum number 

of physical processors that can be used to supply the reserved computation time at a given time. They 

investigated the schedulability of sporadic tasks within such a reservation using the global EDF [45] 

scheduling policy. In addition, they provided a transformation to generate equivalent periodic tasks for 

multiprocessor resource reservations ( MPR ) to be scheduled at the system level. Burmaykov et al [46] 
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proposed a generalization of the MPR model to reduce bandwidth allocation pessimism and provided 

schedulability conditions for both global EDF and global FP scheduling policies. Pathan et al [47] proposed 

an overhead-aware interface generation method for multiprocessor reservations with global FP 

scheduling policies. 

[55] Khalilzad et al. [48, 49, 27] proposed a feedback- based adaptive resource reservation scheme 

that adjusts the bandwidth of resource supply for variable tasks to minimize deadline overruns. 

Groesbrink et al. [29] considered a similar approach to variable task management in which bandwidth is 

adjusted so that each server receives a guaranteed minimum supply, while the remaining spare capacity 

is used to meet the demands of applications whose bandwidth should be increased. Cucinotta et al. [30] 

provided an adaptive scheme similar to the work presented in this thesis for applications with a finite set 

of modes and also consider power consumption as a constraint. 

 

          Legacy Software Migration 

i.e., the adaptation of software to meet various requirements, such as the intro- duction of newer 

algorithms and the change of hardware platform. Menychtas et al. [50] presented a framework called 

ARTIST , a three-phase approach to software modernization with a focus on migration to the cloud. They 

divided migration efforts into three main phases, Pre-migration, Migration and Modernization, and Post- 

migration. For the pre-migration phase, they proposed the investigation of feasibility to considering the 

technical and economic constraints. The changes are made in the migration and modernization phase, 

and finally the system is deployed and validated in the post-migration phase. Erraguntla and Carver 

[51] discussed a three-phase migration method consisting of analysis, synthesis, and transformation 

phases to migrate single-core to multi-core parallel environments. The analysis and synthesis phases 

recover the design of the existing software, while the transformation phase of the migration method 

makes 

rencoemmendations  for  the  multicore  environment.  They 

have also provided a reverse engineering toolkit called RETK for the analysis and synthesis phases. 

Battaglia et al. [52] presented the RENAISSANCE method for re- engineering a legacy system. The 

method focuses on planning and managing the evolution process. Forite and Hug 

[56] proposed the FASMM approach to reuse knowledge gained during migra- tion for reuse in other 

projects. Reussner et al. [54] and Wagner [34] proposed model- driven approaches for software 

migration. Their approach requires reverse engineering the system with automated tools and capturing 

the information in modeling languages and using model-driven techniques to further maintain the 

system. Most of these works provide a general approach to software migration. In this thesis, we adapt 

these approaches for the migration of real-time software to multi-core platforms. 

Fog Computing for Industrial Systems 

Mohamed et al. [55] discussed fog-based solutions for multi- robot systems and Gudi et al.    [56] 

highlighted the advantages of using a fog-based architecture for robotic applications that require 

human-robot interactions. Hao et al. [57] provided a generic software architecture for fog computing, 

while Faragardi et al. [58] provided a time predictable framework for a smart factory that integrates 

the fog and cloud layers. Skarin et al. [59] developed a testbed to investigate the feasibility of a fog-based 

approach for control applications, while Pallasch et al. [60] and Mubeen et al. [61] demonstrated the 
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feasibility of an edge-based solution for combining cloud and end devices. Ning et al. [62] considered 

fog computing in the context of smart traffic management and Barzegaran et al. [63] provided an 

industrial use-case for fog computing in which the electric drives function as fog nodes. 

 

III. Research Objectives 

The objectives of this papers is to propose and evaluate solutions to integrate inde- pendent elastic 

real-time applications on fog computing platforms while satisfying their temporal requirements. To 

achieve this, define the following subgoals are defined: 

RG1: Provide a solution to schedule elastic real-time applications on virtual-ized single-core and multi-

core platforms. 

The fog computing platforms are expected to host a wide range of applications, including those with real-

time requirements. Since the resource requirements of applications may vary between those that require 

limited computation time on a single core and those that require multiple processors for their functional 

behavior, we formulate the research goal RG1 to address the scheduling of applications on both single-

core and multi-core platforms. 

RG2: Propose solutions to guide the migration of existing real-time software applications from single-core to 

multi- core platforms. 

Since many existing real-time applications are optimized for single-core and tworked system 

architectures, it may be necessary to transform their architec- tures for multi-core platforms before they 

can be deployed in a fog computing architecture. To support this transformation, we formulate the 

research goal RG2. 

RG3: Evaluate the advantages of a fog-based architecture for industrial robotic systems and identify research 

challenges. 

Industrial robots are used in many different fields, especially in the automotive industry. The system 

architecture of some existing robot controllers follows a net- worked approach, with software 

distributed across multiple single-core platforms. To investigate the advantages of fog computing 

architecture over such existing architectures, we formulate the research goal RG3. Furthermore, we 

extend the scope of this goal to identify the research challenges associated with fog computing 

architectures so that such an architecture can be realized in practice. 

 

IV. Research Process 

 

The thesis results were developed following the hypothetico- deductive method and consisted of the 

following four steps. 

 

 Problem Definition - Understand the field of the topic through literature review, state-of-art and 

state- of-practice studies, and defining the scope of the problem. 

 

 Idea Development - Iterative development of solutions to the defined prob- lem. 
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 Implementation - Converting the idea and theory into an artefact. 

 

 Evaluation - Evaluate the idea and its implementation and draw conclusions. 

Problem Definition In this thesis, we define the problems for our research to achieve the research 

goals described in Section. 3.1. The problems were based on literature review and inputs from 

industrial experts. 

Idea Development and implementation The solutions to the identified problems were iteratively 

refined by evaluating the solutions using different research methods. A mapping of the different 

research methods used to achieve the research goals is provided in Table 3.1. 

Evaluation The evaluation of the solutions developed for each of the research goals was done through 

a comparative analysis of existing state-of-art solutions for RG1, and state-of-practice for RG3. The 

evaluation of the methodology developed for RG2 was evaluated using a survey-based approach, which 

is described in detail in Paper C (Chapter 7). 

 

Research 

Methods 

Research Goals 

State of art study RG!,RG2,RG3 

State of 

Practice study 
RG2, RG3 

Simulation RG1 

Case Study RG2, RG3 

Survey RG2 

 

 

Table 3.1. Mapping of Research Methods and Research Goals 

 RG1 RG2 RG3 

C1 X   

C

2 

C

3 

C

4 

X   

 X  

  X 

 

Table 3.2. Mapping between the Contributions C1 through C4 and the research goals RG1 through 

RG3. 

 

             Technical Contributions 

 

Here we outline the technical contributions of the thesis and then summarize each contribution. A 

mapping of the research goals to the technical contributions is shown in Table 3.2. 
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C1: A reservation-based scheduling framework for executing elastic real-time applications on a 

uniprocessor system. 

C2: A reservation-based scheduling framework for executing elastic real-time applications on a 

multiprocessor system. 
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C3: A systematic methodology to migrate from a single-core to a multi-core architecture with 

maximum software reuse and minimal reengineering effort for real-time systems. 

C4: A fog-based architecture for industrial robotic systems and identification of research challenges. 

C1: A reservation-based scheduling framework for executing elastic real-time applications on a 

uniprocessor system. 

This contribution addresses the research goal RG1 and is provided in Paper A. Here we consider 

a system model in which an application is modeled after the elastic task model[10] and is assumed to 

execute within a reservation server. The reservation server is designed according to the periodic 

resource supply form (PRM) [13]. The application can include either the fixed-priority rate monotonic 

scheduler or the dynamic earliest-deadline-first priority scheduler. The design parameters of the 

reservation server, i.e., the budget and the period of the server, are set taking into account the initial 

desired utilization and period of the application tasks. Whenever an application task requests a change 

in its period during runtime, the reserved server bandwidth must be updated. Such a bandwidth update 

can be performed without affecting the bandwidth of other reservations if there is sufficient spare 

capacity in the system. However, if there is insufficient spare capacity, there may be no choice but to 

adjust the bandwidth of all other concurrent servers. To minimize such bandwidth changes, a utilization 

modification algorithm, a variant of the original elastic compression algorithm[10], is integrated within 

the application to generate a new set of periods for the application’s tasks that satisfy the constraints 

of each of these tasks. Since the reservation is provided according to the PRM form, there is a possibility 

that, in the worst case, the resource will not be available to the application for a certain duration. If the 

newly generated task periods are shorter than the duration of unavailability, there may be no other 

option but to adjust the server bandwidth. However, if no tasks have their periods less than or equal to 

the unavailable duration and the newly generated periods satisfy a utilization-based schedulability test, 

the server’s bandwidth may remain unchanged, limiting the need to adjust the server’s bandwidth. The 

evaluation in Paper A shows that the proposed approach works well for many task sets, i.e., the 

utilization adjustment within the application can keep the tasks schedulable within the reservation, but 

for certain task sets, the bandwidth adjustments may be unavoidable and the bandwidth needs to be 

readjusted for each period change request. 

C2: A reservation-based scheduling framework for executing elastic real-time applications on a 

multiprocessor system. 

This contribution addresses the research goal RG1 and is 

provided in Paper B. Here we consider a system model where an application is modeled after the elastic 

task model and assumed to execute within a reservation server. The reservation server is designed 

according to the multiprocessor minimum-parallelism resource supply form[14, 15]. This reservation 

model provides an application with a fixed number of fully dedicated processors and at most one 

partial processor that is available according to the periodic resource supply model. Each reservation 

includes a local scheduling policy to schedule the application tasks. In Paper B, the partitioned EDF 

scheduling policy is considered as the local scheduling policy. Similar to the uniprocessor scheduling 

framework discussed earlier, the reservation parameters are set based on the initially desired 

utilization and period of the application’s tasks. Once the initial reservation parameters are set, the goal 

is to minimize the frequency of reservation bandwidth changes. To do so, each time a task requests a 
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change in its period, the utilization modification algorithm considers only the tasks that share the 

processor with the task requesting the change and attempts to generate new periods that satisfy the 

constraints of each of these tasks. If no solution is found, the algorithm re-partitions the tasks among 

the processors, including the partial processor. The re-partitioning can be done according to any 

reasonable allocation scheme [65]. If the re-partitioning approach fails, the reservation bandwidth is 

considered for modification. The change may take the form of a modified partial processor bandwidth 

or, if possible, the allocation of a new, fully dedicated processor. The evaluation in Paper B shows that 

up to ninety-four percent of requests can be satisfied with the per-core utilization modification scheme 

and one hundred percent of requests when combined with the re-partitioning step. 

C3: A software engineering methodology to migrate legacy real-time systems to multi-processor 

platforms 

This contribution addresses the research goal RG3 and constitutes the content of Paper C. Here 

we provide a migration methodology as many existing real- time industrial systems have software 

designed to run on single-core platforms, and they typically rely on a network of multiple single-core 

devices to realize complex functions. With multiprocessor platforms, the network-based system 

architecture can be replaced by an integrated approach in which a multiprocessor hardware platform 

is shared by the software to reduce communication latencies. For some systems where such an 

integrated approach is being considered, a complete redesign for multiprocessor platforms may be 

beneficial; for other systems, reuse of previously 

develoscped  code  may  be  preferred  to  a  complete  redesign. 

Doing so successfully, however, requires a well-defined methodology. In Paper C, we propose a 

systematic approach that defines a set of processes required to enable the reuse of existing code on a 

multiprocessor platform. We also present some of the available tools that can be used in this 

transition. The proposed approach is tailored to systems with real-time requirements and provides a 

three-step workflow that starts with architecture migration, followed by implementation- level 

processes, and finally validation of the transformed architecture. The validity of this approach is 

evaluated using a survey developed following the guidelines  in [66]. The survey questions were 

intended to assess the feasibility, ease of use, and usefulness of the proposed methodology. The results 

of the survey indicated that the proposed approach met the evaluation objectives and that the 

methodology would need to be adapted for individual cases to address the constraints of different 

systems. 

C4: A fog-based architecture for industrial robotic systems 

This contribution addresses the research goal RG3 and is the main content of Paper It demonstrates 

the advantages of a fog- based architecture for an industrial robotic system. The advantages are 

discussed through a comparative study in which an existing robotic system was analyzed and some 

of its limitations were identified. Based on this analysis, a fog-based architecture was proposed that 

eliminates these limitations. The proposed fog architecture shifts much of the existing system 

functionality from a dedicated hardware platform to computational resources in the fog layer. 

However, since the fog computing paradigm is relatively new, there are still significant issues that 

need to be explored for implementing such an architecture in practice. Therefore, a number of 

research challenges have been identified related to isolating and virtualizing resources to deploy real-

time applications in the fog layer and orchestrating real-time workloads among fog computing 
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resources to improve efficiency and performance. 

V. Conclusion 

In this thesis, we addressed the problem of scheduling real- time applications with variable timing 

requirements on virtualized hardware platforms and proposed a scheduling framework that 

minimizes the frequency of system-level bandwidth changes on single-processor and multiprocessor 

platforms. Simultaneously, we ad- dressed the reuse of existing application code developed for single-

core platforms on multi-core platforms and proposed a systematic methodology for managing 

migration, focusing on architecture recovery and its transformation. The method- ology was 

evaluated for feasibility, usefulness, and usability through a survey. In addition, we considered the 

limitations of an existing architecture for industrial robot control systems and proposed a fog-based 

architecture that addresses these limitations and identified some of the research challenges that 

should be addressed to implement such an architecture in practice. 

For future work, we will investigate the worst-case performance of the proposed heduling framework 

and consider alternative reservation strategies such as the GMPR interface [46] and the possibility of 

virtualized access to accelerators such as FPGAs among elastic real-time applications. 
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