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Abstract: This paper intends to estimate the unlabeled two parameters for Cauchy distribution model depend on 
employing the maximum likelihood estimator method  to obtain the derivation of the point estimators for all unlabeled 
parameters depending on iterative techniques , as Newton – Raphson method , then to derive “Lindley approximation 
estimator method and then to derive Ordinary least squares estimator method. Applying all these methods to estimate 
related probability functions; death density function, cumulative distribution function, survival function and hazard 
function (rate function)”.  
“When examining the numerical results for probability survival function by employing mean squares error measure and 
mean absolute percentage measure, this may lead to work on the best method in modeling a set of real data” . 
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I. INTRODUCTION:  

The first publication of Cauchy distribution was in 1824 by the French mathematician Poisson; then it was 
only associated with the name Augustin Cauchy during an academic debate in 1853. Physicists call it the 
Lorentz distribution due to Hendrink Lorents. 
Cauchy distribution is a continuous probability distribution of curves that has heavier tails than the normal 
distributions; and one of the most popular practical applications for this distribution is modeling the ratio of 
two normal random variables. (1,2) 
“Introduce a tree-structured Bayesian network suitable for modelling directional data with bivariate 
wrapped Cauchy distributions. We describe the structure learning algorithm used to learn the Bayesian 
network”. (2) 
Because Cauchy distribution does not have limited moments greater than or equa to one and has no moment 
generating function, it is a stable distribution with a probability density function that can be explained 
analytically and therefore, Cauchy distribution might be considered as an example of a well-accepted results 
and conceple in statitics. (1) 
 
This paper is divided as follows:- The objective of this paper, theoretical section, practical section, results and 
conclusions. 
 
The objective of this paper: 
This paper aims to examine sample type Breast cancer by using maximum likelihood estimator method 
(MLEM) , Lindley approximation estimator method (LAEM) and Ordinary least squares estimator method  ; 
and by comparing the three methods . 
 
Definition and properties: 

“The p.d.f for Cauchy distribution. Is”:   
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Maximum likelihood estimator method(MLEM): 

“The MLM is the most  common procedure to estimate the parameter   which specifies a p.d.f. ):( tf  , 

based on the observations nttt ,.....,, 21  which were independent. sample from the distribution”. 

)5...(]
])([

[)],;([
2211 








i

n

i
i

n

i t
tfL  

)6...(])(ln[lnlnln
1

22



n

i

itnnL   

)7...(
)(

2ln

1
22

 




 n

i it

nL






          ;         0

ln








L
         ;        )8...(

)(

2

1
22

 


n

i it

n






  

)9...(
)(

)(2ln

1
22

 






 n

i i

i

t

tL






                

 ;          0
ln








L

       
 ;   

 
)10...(

)(

)(2

1
22

 

n

i i

i

t

t





  
 “There is no chance to find the estimators for the parameters ),(  , and it is kind of difficulty to 

process the nonlinear equations thus, it is better to make use of iterative methods in numerical analysis as 
Newton–Raphson method which is the best way to get the estimate values and number of iteration”.  

 “The Newton–Raphson method requires an initial value of each unknown parameters” ),(   . 

This method follows : 
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“Lindley approximation estimator method (LAEM)”: 
“Lindley procedure was presented in (1980) first time to approximate the ratio of the integrals of the 
form(3): 
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      “Where ),.....,,( 21 n   are parameters , )(L  is the logarithm of the likelihood function , )(w  

and )(v  are any random functions for parameters”.  

      Let )(v  be the prior distribution of   and )()()(  vuw   . From )20(  we can get posterior 

expectation which is as follow : 
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“We make used of Lindley's approximate 
^

R  which approximate the ratio of the two integrals to obtain Bayes 
estimators approximation that can be resulted as follows” : 
Using equation (6) we get the following: 
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Ordinary Least Squares Estimator Method (OLSEM): 
“The OLSEM is the most used way to estimate parameters in linear or nonlinear model. Researchers make use 
of this method to lessen the sum squares differences concerning observed sample values and expected 
estimated values by linear approximation”. (4,5) 
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 There is no chance to find the estimators for the parameters ),(   , and it is kind of difficulty to 

process the nonlinear equations thus, it is better to make use of iterative methods in numerical analysis as 
Newton–Raphson method which is the best way to get the estimate values and number of iteration.  

 The Newton–Raphson method requires an initial value of each unknown parameters ),(   .  
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II. RESULTS AND DISCUSSION: 

The Educational Hospital in Diwaniyah province was the place from which the data was gathered. 
Keeping in mind that this work relies on data taken from real life, it is reached to select this kind of cancer 
(Breast cancer) because it is remarkable widespread and deadly in Iraq; this disease has failure time (death 
time) which is phenomenon in this paper. 
The study of this paper covers a period of six months; it begins from Jun 2019 until December 2019; it is an 
experiment that includes (14) patients.(12) patients were dead and (2) patients remain alive . 
When applying the test statistic (Kolmogorov-Smirnov) depending upon statistical programming (EasyFit 5.5 
Professional) in order to fit Cauchy distribution data , it is discovered that the calculated value is (0. 11034) , 
this means data is distributed according to Cauchy distribution .  
The null and alternative hypotheses are as follows :  

0H  : The survival time data is distributed as Cauchy.  

1H  : The survival time data is not distributed as Cauchy.  

 

 
‘Figure(1)’ 

Fit the data for Breast cancer from Educational Hospital Diwaniyah 
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When applying  MATLAB (R2014a) , the estimated parameters results are as follows : 
The assumed initial values for two-parameters are as follows:  

Table (1) 
MLEM OLSEM LAEM 
Initial values of parameters 

052.00     ;     310       520     ;     310    
 

0019.00     ;   1635.510    
 

Estimated values for the parameters 

019.0
^

   ;   1635.51
^

    0004.0
^

    ;   4100.1
^

    01900596.0
^

  ; 16350063.51
^

    

    
After that , using these estimated values for two-parameters in Cauchy distribution to find the numerical 

values for )(tf  , )(tF  , )(ts  and )(th  . 

Table (2) : Estimated values for functions )(tf  , )(tF  , )(ts  , )(th  by LAEM 

Failure Time )(tf  )(tF  )(ts  )(th  

15 4.62E-07 5.698456 0.499992 9.25E-07 

21 6.65E-07 7.599852 0.499988 1.33E-06 

23 7.62E-07 8.201278 0.499986 1.52E-06 

25 8.83E-07 8.785386 0.499984 1.77E-06 

28 1.13E-06 9.628227 0.499979 2.25E-06 

29 1.23E-06 9.900173 0.499978 2.46E-06 

29 1.23E-06 9.900173 0.499978 2.46E-06 

30 1.35E-06 10.1676 0.499975 2.70E-06 

34 2.05E-06 11.19218 0.499963 4.11E-06 

38 3.49E-06 12.14562 0.499936 6.98E-06 

39 4.09E-06 12.37313 0.499925 8.18E-06 

42 7.20E-06 13.03039 0.499869 1.44E-05 
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Table (3) : Estimated values for functions )(tf  , )(tF  , )(ts  , )(th  by OLSEM 
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III. CONCLUSIONS: 

1- We notice in both methods that the estimated values of the probability survival function decrease with 
increasing failure times (an inverse relationship between them). 
2- We notice in both methods that the estimated values of the potential risk function increase with increasing 
times of failure (a direct relationship between them). 
3- It is recommended to use (LAEM) of Cauchy distribution of Breast cancer by employing MSE criterion. 
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