
Ilkogretim Online - Elementary Education Online, 2021; Vol 20 (Issue 3): pp. 3666-3696
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2021.03.384

3667 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Generating Test Cases Automatically From Uml Diagrams: A

Systematic Literature Review

Preeti Malik1*, Varsha Mittal1, Rohini2

1Department of Computer Science and Engineering, Graphic Era University, Dehradun.

2School of Management, Graphic Era Hill University, Dehradun Uttarakhand

* Corresponding Author: preetishivach2009@gmail.com

Abstract. Software testing is a crucial and fundamental step in the creation of software that

sets the standard for software quality. However, the testing process is consuming tasks that

should be automated to save a significant number of resources. Computerizing experiments

is becoming the main testing technique as we go toward automated testing. The main

benefit of automated testing techniques is that they hasten the delivery of services for the

products to the market with low risk of failure and increase the value of the product. Testing

automation would be a crucial choice if the purpose of the organization were to reduce

expenses and advance innovation. The objective of this review is to examine the existing

research in generating test cases using UML diagrams and to enhance the

comprehension of UML chart-based testing systems.

1 Introduction

Software is the most important mean which is prompting almost all electronics and

industrial organizations [1, 2]. Testing in software is a superiority phase of evolution of

software. Main aim of testing is not to productivity only but also support to enhance the

quality of software product from small scale to large scale. In fact, we test the software

until the product is valid and verifiable. As increasing the software complexity, the

requirement of test coverage needed for generated test case increases gradually [3].

Testing is an activity where the remaining error from all the previous phases must be

detected. The main focus of a testers during testing of software is that they must know

about minimizing of large number of test case into manageable test set, and be able to

take the calculated risk about what are important to test and what are not. The main

aim of our automated testing during the minimization of test cases is to produce cost

and time efficient software. In Software Development Life Cycle (SDLC), test process is

mailto:preetishivach2009@gmail.com
mailto:ach2009@gmail.com

3668 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

the most important phase to check the Software System validation. It is mainly

completed by running test and inspection of these processes. The whole Test process

complete in three parts:

1. Test case generation.

2. Execution of Test case.

3. Evaluation of Test case.

The main aim of testing should be conveying advice to change and modify software

if necessary. The reason behind designing of test case is to rectify the different

categories of error with minimal effort and time. Software reliability and quality are

mainly depended on the collection of data while testing. The advantages of testing are:

i. Improved productivity of software developer.

ii. Time

reduction. iii.

Cost reduction.

iv. Controlling on error is fast.

Testing is a major challenge in software development in terms of generating efficient

test cases. It becomes a challenge while testing of a software, when multiple executing

participant appear simultaneously in a system, as system similar to that will give

different outputs depending on the occurrence of concurrent participant. Some of the

software organizations are still performing manual software testing. As the

development of the test script are done manually by the test engineer, that is why the

execution of test case is automated in most of the test automated tool. In comparison

to that, Model Based Testing (MBT) robotized the test design for generating the test

cases reflexively from System Under Test (SUT) model. Unified Modeling Language (UML)

is a type of MBT. UML was announced by the Object Management Group in 1997. Object-

Oriented prototypes are very fast used in industries and academics. UML is the most

superior and controlling modeling language used in development of software. On the

basis of two category level, UML diagram are divided into twelve diagrams [4]:

A) Structural Level (package, class, object, composite, and profile diagram)

B) Behavioral Level (Activity, State machine, Use Case, Sequence, Communication,

Interaction, and Timing diagram).

Structural diagram signifies the inter-relation between different component of

system on different hierarchy of abstraction while the behavior of object including

changes with the time in object and their interaction with each-other comes in

Behavioral diagram. UML diagrams are used for generating the test cases from model.

MBT is becoming famous in both academia as well as in industry. Because of the

increasing in complexity, many critical functions are performed and dependability

requirement such as safety, reliability, availability, and security of the system is very

crucial for the user of the system. On the basis of requirement specification, the

information is preserved by the model and it forms a basis of final implementation.

3669 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Model determines logical paths, location of program boundaries, identify reachable

problem.

This paper surveys existing literature in test case generation using UML diagram.

This study discusses techniques proposed by various researchers and what are the

limitations of these techniques. The paper that rest part is designed as follows: Next part

is dedicated to related work in same area. Section 3 includes whole review process.

Section 4 discusses results and threats to validity of review is included in section 5. At

the end section 6 conclude the review.

2 Related Work

In this section the studies that discussed existing literature in the context of test case

generation using UML diagram are presented. Many researchers have discussed about

the related work which are based on UML based test case generation. Many of the

traditional techniques are taken into consideration in addition to their methods on

UML diagram-based test case generation. Karambir in [5] presented a report based on

the technique called test case generation. After reviewing the numerous existing

techniques, they labeled the existing techniques widely into three sections (i.e.)

generation of test cases using genetic algorithm, by operation of haphazard testing

technique and make use of model-based testing for generation of test cases by

investigating the dynamic nature of objects. At last, the whole research surveyed that

fault presented in the model can be detected by model itself during the testing process.

So, the cost of defected model can be eliminated as possible and gives efficient result.

Kaur in [6] presented review by evaluating the dynamic nature of UML Diagram using

evolutionary algorithm for generation of test case techniques on the basis of their

hybrid approach. At last, they introduced a new technique to generate test case by

applying sequence diagram with multipurpose. Pahwa in [7] proposed number of

techniques based upon UML diagram for the generation of test case. To make suitable

execution they targeted on the best use of UML techniques for generation of test cases.

Prasanna, M., et al. in [8] reported a survey based on automatically generation of

test cases using UML diagram. According to them techniques can be categorized into

mainly three sections: (1) specification-based techniques (2) model-based techniques

and other (3) hybrid-based techniques approaches. Thereafter, many problems are

found by using the traditional techniques such as numerous test statistics may be

generated by the random test cases but they fail to analyze test case to fulfill the

requirement. The path for which generating the test case is described by path-oriented

approach but it might be infeasible and it is found that the test data generated might

be unable to traverse the input data through the path. The test case can also be

generated quickly by an intelligent approach but it is found complex, that is why model-

based testing is given more preference as it create pliable and effective test automation

in a practical way from the first day of development.

3670 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Ingle and Mahamune [9] presented a review based upon reflexive way of generating

test cases using UML diagram. The incorporation of survey depends on two levels

generating the test cases based on specification and test case generation relies on

model. Dias Neto., et al. [10] presented a precise review depend upon MBT method. By

the analysis of selection study, it is found that the initially described papers shrink. The

overall inspection shows where MBT approaches are efficient to be applied, and also

shows their features and drawback. Some of the parameters are identified and Com-

pared on the basis of their representing models, test coverage criteria, provision tools,

intermediate models, level of automation, and complexity.

Khanda, M., et al. [11] presented a precise survey for parallel as well as non-concurrent

system and various existing methodologies are used for generating the test cases. They

presented the summarized result of work done in that field and give the

features/drawbacks. They resulted that researchers get information easily about

generating the test cases using UML diagram and resulted work related to the identified

research field. Arvinder Kaur and Vidhi Vig presented another survey given in [12]. The

scope of the survey was based on UML diagrams testing. For model-based testing to

generate auto test cases many researchers use different specific diagram like Use case,

class diagram, collaboration diagram, sequence diagram etc. In this survey, researcher

merged the existing work, and answer is presented through its research question about

the most popular techniques used in research field of model-based testing. The

discussion of the testing type used in each study being next.

Noraida Ismail et al., (2007) [13] discusses some approaches of MBT issues arises and

highlighted that the approaches are using is not fully automated. According to the

systems requirement for generation of test cases, author has proposed a tool to handle

these issues. The proposed process was classified into two steps: - (1) system

requirements were converted into Use case diagram and (2) Using the existing

approach Use case the test cases will be generated. As per the requirement of the

system, the generated tests cases will be analyzed and validate because the testing

phase is important

3671 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

in SDLC. During the process of testing, if the generation of test cases gets delayed then,

there is chance of increasing error which becomes so complex to remove and debug at

the end of testing. The researcher explained that as per system requirements, choosing

the use case diagram is used for further use and modification.

Anjali Sharma and Maninder Singh [14] presented that the most valuable step in

testing is generating the test cases. For generation of test cases, author proposed an

algorithm that takes UML diagram as an input. The whole transaction is done on the

basis of the proposed framework which will ap- plied in all existing UML diagram that

includes use case, sequence diagram, class diagram, data flow diagram etc. and translate

these existing diagrams into a control flow graph. To get the output as test cases and

coverage criteria, the input set is applied to the test cases generator and strike the

algorithm which generate cost. The generated output test cases and coverage criteria

are taken as input to report the generator tool and tester.

Salman in [15], presented a recently work that has done on literature review that is

using the UML state diagram in Model-based testing. The outcomes are presented the

systematized and complete details in tabular form. This tabular form contains the field

of Author Name, tools used, Input model, method used, coverage criteria, and

Intermediate Model. According to survey, it is found that most of the Author used Depth

First Search algorithm in their techniques. The authors presented main reason behind

the generation of test cases through UML is to validate the relationship between

behavior, action state, and event. Correct Models are totally depending on the accuracy

of generated test cases. The trustworthy output will not be generated, if used model are

unreliable and incorrect. According to Ostrand [16] they presented that input is taken as

Model-based testing approach which work under the system under test for generation of

system model that define the test coverage criteria. The generated test cases were

produced while analysis of Model-based approach using Category Partition Method

becomes completed. This survey resulted that work done on particular approach and

also represent UML diagram are not covered.

Anand, S., et al. [17] presented a review based on few popular techniques for

generation of test cases that contains figural execution, combinational, model-based,

search-based and adaptive based testing. The main reason behind initialization of this

survey was to present traditional techniques, updated techniques and summary of

research used in automatically generation of test cases while make sure of scopes and

validity.

Hooda [18] demonstrated an inspection about techniques used to generate test

cases that help in reduction of test cases, prioritization, estimation and selection

techniques. The aim of this survey is to help the tester to reduce the time, cost, and total

effort to arrange and rank the generated test cases based on various existing

techniques. Tahiliani [19] demonstrated a survey that based on generation of test cases

3672 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

using various existing techniques such as Use case approach and UML diagram. As the

discussion shows that the complete process was not presented by any of the techniques

along with declared algorithm but mentioned the advantages and limitation of both

approaches.

3 Planning of Systematic Literature Review

For performing systematic literature review (SLR), the methodology adopted was

recommended by Kitchenham et al. [20, 21]. Some phases of the SLR have been taken by

other approaches [22, 23, 24]. The phases followed for this review study has been

depicted in figure 1. First and foremost, task is to formulate research questions and

search string is identified. This search string is then used to search the literature

resources like IEEE, ACM etc. In next phase, selection has been done on the studies we

got from various databases and refine the studies by applying quality assessment

criteria. And finally, data extraction and synthesis has been done.

3.1 Research Questions

The reason behind using this SLR is to study the existing well-known literature on test case

generation using UML diagrams research to examine (1) what are the existing

techniques used to generate test cases using UML diagrams (2) what are the limitations

of existing techniques (3) what are the future directions and challenges in automated

generation of test cases using UML diagrams? Following are the research questions

formed for this SLR:

RQ1: What are the existing techniques for automated test case generation

using UML? SQ1.1: Which of the UML diagrams is mostly used?

SQ1.2: What is the trends in using UML Diagrams versus Test Coverage Criteria?

RQ2: What are the limitations and future direction of existing techniques for

automated test case generation using UML?

3673 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Fig. 1 Phases of SLR Process

3.2 Search Process

A brief description of search process used to extract the appropriate studies on test

case generation using UML diagrams, research is presented in this section. The process

includes identification of search databases, identification of search string and search

process. We start by identifying libraries. Our selection includes:

• ACM Digital Library,

• IEEE Xplore,

• ScienceDirect,

• Springer.

Boolean AND and OR operators are used to connect keywords to formulate search

string. However, the string had not been used as it is for all the databases, since some of the

resources have some certain way to formulate the string. In such case, a similar string

has been formed. In figure 2, the string has been shown:

3674 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 Fig. 2 Search String

3.3 Inclusion and Exclusion Criteria

Defining the criteria for including or excluding a particular study is one of the key

activities of SLR. These criteria help the reviewers in identifying relevant studies. We

also use these criteria to reduce number of studies we got from various databases. If a

study is classified in at least one exclusion criteria, it will be discarded and if a study is

classified in one of the inclusions criteria, then it is included. Its criteria can be defined

as follows:

Inclusion Criteria

• All studies put out in English;

• The primary study must propose a method for test case generation using UML diagrams;

• The study that answers at least one research question;

• The primary study must propose a tool/ framework development for test case generation;

• In case of two versions of same study the recent one is

included. Exclusion Criteria

• Study that is not published in English language;

• Study that does not answers any of the research questions;

• In case of duplicate studies only the most updated one is included;

• The primary study is not related to test case generation using UML diagrams.

3.4 Study Selection Procedure

The selection of studies is done by last two authors. Removing duplicate is the foremost

task of selection process. Then we have applied title and abstract scrutiny. We have

assessed 1731 studies from a search undertaken in IEEE Xplore (36), ACM (11),

Springer (849) and ScienceDirect (835). All those papers were discarded that didn’t have

any correlation with specific domain. In second phase of selection process, it is necessary

to review those papers again for ensuring that the papers that are selected are genuine

or not for generating the test cases using UML diagram. Quality assessment is the next

step that will be discussed in following sections. Finally, we got a sum of 58 primary

studies (see figure 3).

3675 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Fig. 3 Search Process

3.5 Quality Assessment Process

The quality assessment of 66 studies was done by forming six quality assessment

criteria (see table 1). There are three possible answers to each question: yes, not clear

or partly and no [25]. The quality score for the answers is 1, 0.5 and 0 respectively. Final

quality score for each of the study is computed by adding up all the six scores of that

particular study. The studies included are those studies having quality score 3.5 or more

on a scale of 0-6. As a result, 8 studies were found to be not relevant to our SLR (see table

4). Finally total 58 studies are selected as primary studies (table 7). The quality score of

58 studies can be seen in table 6.

S. No. Criteria

1 Is the problem clearly described?

2 Is there adequate discussion of related work?

3 Is the technique well described so that the author or others can validate it in

later research?

4 Is this a significant increase of knowledge of these situations?

5 Is the technique compared with the existing one?

6 Do the study goals were achieved?

Table 1 Quality Assessment Questions [26, 20, 27]

3.6 Data Extraction

3676 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Next task is to extract relevant data from those 58 primary studies. For this purpose, a

data extraction form is designed in table 2. The main purpose behind the designing of

this form was to gather those information from the selected studies that is needed to

answer the research questions. This design is divided into four sections: study detail,

study assessments, study description, and study findings. First section holds general

information of the studies like: title, author, venue of publication etc. Second section

contains description of the study which includes research type, aim of the study. Third

section is the most important one. It includes the detailed information about the

diagram used, coverage criterion and intermediate model used for generating the test

cases. And, the final study shows that the subjective evaluation of the studies that

highlight their result, drawback, strength, scope for future work and to which research

questions (RQ1 or RQ2) these studies are belonging. Some of the studies answer more

than one question.

Study Details

Reviewer: Name of reviewer

Paper ID: Unique ID of primary study

authors: Author’s Details

Title: Title of Primary Study

Publication Venue: Journal, conference papers, bulletins, book chapters,

workshops, white papers, sympo-

 Sium

Details of

publication:

Year, Page numbers

Study Description

Research

Methodology:

Aim of the study:

Experiment, Observation, tool development, solution

proposal, experience report

Domain, problem solution, conceptual framework,

observation, model transformation

Detailed Assessment

Applicability

Context:

Intermediate

Model Used:

Coverage Criterion:

Identification of the UML diagram on

which method applied Which intermediate

model is used?

Coverage Criterion Used

Study Findings

Findings and Conclusion: Conclusion and finding of the study

Limitations: Shortcomings of the study and area of future work

Mapping to the identified re- Under which research question the study falls?

search question:

3677 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 Table 2 Data Extraction Form

4 Results and Discussion

4.1 Overview of Primary Studies

For this survey, we have found 58 primary studies. It contains 14 journal articles, 38

conference papers, 1 paper is from ACM software engineering notes, and 5 were book

chapters. Primary studies found from various resources are presented in Figure 4.

Figure 5 presents number of studies per year and table 3 shows overall analysis of the

studies that belongs to the research question.

4.2 Research Types

Primary studies have been divided into 6 categories; experiment, observations,

problem solution, tool development, tool review, and technical report. Study [P5] is the

only technical report and it is dedicated to tool development also. Figure 6 shows

research type distribution of the primary studies.

Fig. 4 Number of Studies in specific venues

3678 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Fig. 5 Studies per year

Fig. 6 Research Types

3679 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

R

Q

Primary Studies

1 P[1-58]

2 P[1],P[2],P[3],P[4],P[6],P[7],

P[11],P[12],P[13],P[14],P[15],P[16]P[17],P[18],P[19],P[20],P[21],P[22]

 P[23],P[24],P[25],P[26],P[27],

P[28]P[29],P[30],P[31],P[32],P[33],P[34],P[35],P[36],P[37],P[38],P[39]P[40]

 P[41],P[42],P[43],P[44],P[45],

P[47],P[48],P[49],P[50],P[51],P[52]P[53],P[54],P[55],P[56],P[57],P[58]

Table 3 Overview of the Studies belongs to each research questions

4.3 RQ1. What are the existing test case generation techniques using UML diagrams?

To answer this question, analysis has been performed to strengthen the belongings.

Table 5 depicts analysis of primary studies. The following parameters are used to

compare the primary studies while analyzing generation of test cases using UML

diagrams (1) Model used [19, 18]. (2) Use of Inter- mediate model or form [7, 28]. (3)

Coverage criteria used. By examining the primary studies, we have following findings:

(1) Appropriate coverage criteria need to be taken in an order to make test cases

efficient. (2) Exact understanding of UML diagrams should be there. (3) Minimum

intermediate form or no intermediate form should be used. (4) Use of no or minimum

number of diagrams while generating test cases.

Most used UML diagrams

Though UML diagrams have been appeared and discussed in the significant way that is

mention in the traditional literature survey, as there no such protocols have been

defined in the exiting literature that measures the quality and implementation of

defined diagrams. For this, we analyze these 8 UML diagrams based on their research

process mentioned in this paper. Figure 7 represents the bar graph for the UML

diagram used in test case generation. Deployment and object diagram are not used for

this purpose. Some of the studies used combination of two or more diagrams [P12, P13,

P16, P21, P24, P28, P32, P33, P36, P41, P44, P52, P53]. Activity (39.65%), state chart

(29.31%) and sequence diagrams (24.13%) are most used diagrams.

3680 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 Fig. 7 Usage distribution of various UML Diagrams

UML diagram versus Test overage Criteria

In this section we have analyzed test coverage criterion with different UML diagrams

(see table 5). This analysis has been shown as a bubble plot in Figure 8.

 Fig. 8 Bubble Plot of UML diagram Vs. Coverage Criteria

3681 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

4.4 RQ2: What are the limitations of existing techniques for automated test

case generation using UML?

4.5 RQ3: What are future direction and challenges in automated test case

generation using UML?

We have merged answer to question 2 and question 3 as they both are related.

Limitations of the studies can be considered as their future work. Aim of these

questions is to find gaps and challenges issues that should to be handled for effectively

generating test case using UML diagrams. The identified issues that required to be

addressed are numbered as follows:

1. Very small number of primary studies focused on search space saving while

generating test cases. Only [P26] considered this metric. [P6, P29]

2. How to estimate the quality, correctness and completeness of the test case

specification? [P27, P37, P40, P41, P52, P53, P56]

3. Manual interference should be less. [P3, P22, P25, P30]

4. Two or more diagrams can be combined [P14, P18, P19, P31, P32, P45]

5. Test Case Generation can be extrapolated so that various test coverage can be

accommodated [P34, P35, P36, P39, P58]

5 Threats to Validity

This section validates the process we have applied while performing our SLR. We have

validated criteria taken for consideration of inclusion and exclusion of studies and data

extraction process.

Inclusion and Exclusion of studies for synthesis

The papers were first selected from the electronic databases and then selection criteria

(title and abstract scrutiny) have been applied. We have found 147 papers. Full paper

scrutiny is then applied then we found 66 papers. A summarized explanation of the

selection criteria followed with the formulated questions were implemented to get rid

of incorrect exclusion of the required studies. Subjective judgment is potential threat for

inclusion and exclusion of studies. Last two authors read full text of papers and then

reach at the conclusion. To cutoff these issues at each step the discussion has been

made among authors.

Data Extraction:

A large number of researches have been done in the field of test case generation using

UML diagrams and this SLR focuses on three research question (1) existing techniques,

3682 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

(2) limitations, and (3) future work/ issues/problems that need to be addressed in

future. The extraction form of data was structured to analyze the information of primary

studies more effectively. To reduce the hazard data extraction was done by first two

authors. The final data submitted was taken into consideration by first two authors

arranged to value the study relevance and reliability.

6 Conclusion and Future Work

The aim of this study is to find out and examine the applicability of the UML diagrams

in automated test case generation process. Two research questions formulated for this

review study. 58 studies were found as primary studies for this SLR. We have identified

limitation of the existing literature which can be future scope in this area of test case

generation using UML diagrams. To estimate the quality, correctness and completeness

of the test case specification can also be future work.

References

[1] Deepika, Ompal Singh, Adarsh Anand, and N. P. Singh. Testing domain dependent software

reliability growth models.

International Journal of Mathematical, Engineering and Management Sciences, 2(3):140–

149, 2017.

[2] Raksha Verma and Subhrta Parihar, R. S.and Das. Modeling software multi up-

gradations with error generation and fault severity. International Journal of

Mathematical, Engineering and Management Sciences, 3(4):429–437, 2018.

[3] Yoo-Min Choi and Dong-Jin Lim. Automatic feasible transition path generation from

UML state chart diagrams using grouping genetic algorithms. Information and

Software Technology, 94:38–58, 2018.

[4] Nisha Rathee and Rajender Singh Chhillar. A survey on test case generation

techniques using UML diagrams. Journal of Software, 12(8):643–648, 2017.

[5] Karmbir and Kuldeep Kaur. Survey of software test case generation techniques.

International Journal of Advanced Research in Computer Science and Software

Engineering, 3(6):937–942, 2013.

[6] Kirandeep Kaur and Vinay Chopra. Review of automatic test case generation from

UML diagram using evolutionary algorithm. International Journal of Advanced

Research in Computer Science and Software Engineering, 2(11):17–20, 2014.

3683 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

[7] Neha Pahwa and Kamna Solanki. UML based test case generation methods: A

review. IJCA Journal, 95(20):1–6, 2014.

[8] M Prasanna, S N Sivanandam, R Venkatesan, and R Sundarrajan. A survey on

automatic test case generation. Aca- demic Open Internet Journal, 15:6, 2005.

[9] S. E. Ingle and M. R Mahamune. An UML based software automatic test case

generation: Survey. IRJET, 02(2):971– 973, 2015.

[10] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos.

A survey on model-based test- ing approaches: A systematic review. In Proceedings

of the 1st ACM International Workshop on Empirical Assessment of Software

Engineering Languages and Technologies: Held in Conjunction with the 22Nd

IEEE/ACM International Conference on Automated Software Engineering (ASE)

2007, WEASELTech ’07, pages 31–36. ACM, 2007.

[11] Monalisha Khanda, Arup Abhinna Acharya, and Durga Prasad Mohapatra. A survey

on test case generation from UML model. IJCSIT, 2(3):1164–1171, 2011.

[12] Dr. Arvinder Kaur and Vidhi Vig. Systematic review of automatic test case

generation by UML diagrams. Interna- tional Journal of Engineering Research &

Technology (IJERT), 1(6):1–17, 2012.

[13] Noraida Ismail, Rosziati Ibrahim, and Noraini Ibrahim. Automatic generation of test cases

from use-case diagram.

Proceedings of the International Conference on Electrical Engineering and Informatics,

pages 699–702.

[14] Anjali Sharma and Maninder Singh. Generation of automated test cases using UML

modeling. International Journal of Engineering Research & Technology (IJERT),

2(4):1833–1835, 2013.

[15] Yasir Dawood Salman and Nor Laily Hashim. Automatic test case generation from

UML state chart diagram: A survey. In Hamzah Asyrani Sulaiman, Mohd Azlishah

Othman, Mohd Fairuz Iskandar Othman, Yahaya Abd Rahim, and Naim Che Pee,

editors, Advanced Computer and Communication Engineering Technology, volume

362, pages 123–134. Springer International Publishing, 2016.

[16] T. J. Ostrand and M.J. Balcer. The category-partition method for specifying and

generating functional tests. Magazine Communications of the ACM, 31(6):676–686,

1988.

[17] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,

Wolfgang Grieskamp, Mark Har- man, Mary Jean Harrold, and Phil McMinn. an

orchestrated survey of methodologies for automated software test case generation.

Journal of Systems and Software, 86(8):1978–2001, 2013.

[18] Itti Hooda and Rajendra Chhillar. A review: Study of test case generation

techniques. IJCA Journal, 107(16):33–37, 2014.

[19] S. Tahiliani and P. Pandit. A survey of UML based approaches to testing.

3684 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

International Journal of Computational Engineering Research, 2:1396–1401, 2012.

[20] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic review

process research in software engineering. Information and Software Technology,

55(12):2049–2075, 2013.

[21] Barbara Kitchenham, O.Pearl Brereton, David Budgen, Mark Turner, John Bailey,

and Stephen Linkman. System- atic literature reviews in software engineering a

systematic literature review. Information and Software Technology, 51(1):7–15,

2009.

[22] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Nazri Mahrin. A

systematic literature review of software requirements prioritization research.

Information and Software Technology, 56(6):568–585, 2014.

[23] Tore Dyba, Vigdis Kampenes, and Dag I.K. Sjoberg. A systematic review of statistical

power in software engineering experiments. Elsevier, 48(8):745–755, 2006.

[24] Tore Dyba, Torgeir Dingsoyr, and Geir K. Hanssen. Applying systematic reviews to

diverse study types: An experience report. IEEE, 2007.

[25] Martin Ivarsson and Tony Gorschek. A method for evaluating rigor and industrial relevance

of technology evaluations.

Empirical Software Engineering, 16(3):365–395, 2011-06.

[26] Tore Dyba and Torgeir Dingsoyr. Empirical studies of agile software development:

A systematic review. Information and Software Technology, 50(9):833–859, 2008.

[27] Roel Wieringa, Neil Maiden, and Nancy Mead. Requirements engineering paper

classi?cation and evaluation criteria: A proposal and a discussion. Requirements

Eng (2006), 11:102–107, 2005.

[28] Shireesh Asthana, Saurabh Tripathi, and Sandeep Kumar Singh. A novel approach

to generate test cases using class and sequence diagrams. In Sanjay Ranka, Arunava

Banerjee, Kanad Kishore Biswas, Sumeet Dua, Prabhat Mishra, Rajat Moona,

Sheung-Hung Poon, and Cho-Li Wang, editors, Contemporary Computing, volume

95, pages 155–167. Springer Berlin Heidelberg, 2010.

7 Appendix

 Table 4 Excluded Studies from Quality Assessment Step

S. No. Title QA

1

QA

2

QA

3

QA

4

QA

5

QA6 Tot

al

1 UML Sequence Diagram Based Testing Using

Slicing

1 0 0 0 0 1 2

2 A Business Process of Web Services Testing

Method

Based on UML2.0 Activity Diagram

1 0.5 0.5 0.5 0 1 3.5

3685 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

3 A Novel Approach for Scenario-Based Test

Case Gen-

Eration

1 0 0.5 0.5 0 1 3

4 Mapping UML to Labeled Transition Systems

for Test-

Case Generation

1 0 1 0 0 1 3

5 Automated Test Case Generation for Object

Oriented

Systems Using UML Object Diagrams

1 0 0.5 0.5 0 1 3

6 Automatic Test Case Generation Using

Sequence Dia-

gram

0.5 0 0.5 0.5 0 0.5 2

7 Automatic Test Case Generation with State

Diagram for

Validating the Solar Integrated System

1 0 0.5 0 0 0.5 2

8 Agent-Based Regression Test Case

Generation using

Class Diagram, Use cases and Activity

Diagram

0.5 0 0.5 0.5 0 0 1.5

 Table 5: Analysis of Primary Studies

P ID Apllicability Coverage Criterion Intermediate Model

P1 State Diagram Code Coverage XMI, Tree

P2 State Chart Fault, transition coverage OCL, MDL (Rational Rose

file)

P3 State Chart Transition STRIPS Planning problem

P4 State Chart Minimal arc coverage Usage model, usage graph

P5 Activity Diagram Path coverage MDL

P6 State Chart state, transition,

 condition,

Timed automata

 boundary, data flow

P7 State machine Path coverage XMI, composite control

flow

 graph, adjacency matrix

P8 Activity Diagram Path coverage XMI, tree

P9 Sequence Path coverage Sequence Dependency

Table

3686 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P10 use case, sequence Path coverage UDG, SDG, (system testing

gr-

 pah)

P11 Sequence Path coverage, transition

cover-

Labeled transition system

 age

P12 Combination of

collaboration

Path coverage State COllaboration TEst

Model

 diagrams and statecharts

P13 Sequence, class and OCL Path coverage Testable Aggregate Model

P14 Communication diagram link coverage, message

paths

XML

 coverage as well as

boundary

 coverage

P15 State machine Transition path coverage NONE

3687 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P1

6

State, Class and OCL Path coverage test case tree

P1

7

State machine and their

semantic

Input sequence based

coverage

None

 model (path, state, component)

P1

8

sequence diagram symbolic path coverage Tree

P1

9

Activity Diagram activity, transition, simple

path,

Java programs

 trail coverage

P2

0

Activity Diagram various criteria XMI and other details

P2

1

Class, activity, sequence Path coverage Extended class, activity

and se-

 quence diagram

P2

2

State Chart elementary transition path synthesized state model

P2

3

Activity Diagram Path coverage Interaction Flow Diagram,

Inter-

 action Flow Graph

P2

4

Class, sequence diagram message sequence XMI

P2

5

sequence diagram method and exception

coverage

NONE

P2

6

Activity Diagram Hybrid activity dependency (AD)

table

 and AD graph

P2

7

State Chart Action Coverage NONE

P2

8

use case, class, interaction Path coverage Graph

P2

9

State Diagram Code Coverage NONE

P3

0

State Diagram Transition coverage State Table, transtion tree

P3

1

Interaction diagram slice test, meaasge path,

bound-

message flow dependency

graph

 ary testing, basic

interaction

3688 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 coverage

P3

2

Activity, sequence diagram Path coverage System graph

P3

3

Class, state, activity

Diagram

Code Coverage None

P3

4

Actitvity activity path coverage Activity Graph

P3

5

Activity Diagram Path coverage Euler’s circuit

P3

6

sequence, state amchine structure coverage.. Path

cover-

NONE

 age

P3

7

sequence diagram object coverage use case

 contract(predicate

 logic)

P3

8

Seuence Diagram Code Coverage non-deterministic

Automata

P3

9

Collaboration Diagram Test coverage metrics Proposed Algorithm, tree

P4

0

Activity Diagram basic path coverage, simple

path

EADG, ADG

 coverage

P4

1

Use Case, Activity Diagram None OCL ,Tree

P4

2

Activity Diagram Control Flow Path Coverage XMI, Tree

P4

3

Activity diagram Path Coverage , FDG

P4

4

Sequence Diagram, State

chart

 Sequence Graph, State

chart

 Diagram Graph, SYTG

P4

5

Activity Diagram Path Coverage, Code

Coverage

BDT, GP

P4

6

Sequence Diagram message sequence path

coverage

SFC, MCFG, XMI

P4

7

Function Block Diagram FB-Path Complete

Condition

UPPAAL model

 Test Coverage, FBD

structural

 testing coverage

3689 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P4

8

Sequence Diagram test path coverage TEDCPN

P4

9

State based Use Case Control Flow Path Coverage FDR tool, CNL

P5

0

Class Diagram Concerning coverage OCL

P5

1

Activity Diagram covering array JVM

P5

2

Activity Diagram, Sequence

Di-

simple path flow ADG, SDG, SYTG

 agram

P5

3

Communication and

 Activity

basic path coverage ,

Activity-

TFT, COMMACTtree

 Diagram PathCoverage

P5

4

Activity Diagram Activity Coverage

,Transition

DFS

 Coverage ,Simple Path

Cover-

 age

P5

5

Activity Diagram Transition Coverage GGA

P5

6

Activity Diagram Transition Coverage,

 Branch

XMI

 Coverage

P5

7

Activity Diagram Activity coverage/

Transition

XMI

 coverage /Key path

coverage /

 Interaction coverage

P5

8

Activity Diagram Flow of Control ITM

3690 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 Table 6 Quality Score of Primary Studies

I

D

QA

1

QA

2

QA

3

QA

4

QA

5

QA

6

Tot

al

I

D

QA

1

QA

2

QA

3

QA

4

QA

5

QA

6

Tot

al

I

D

QA

1

QA

2

QA

3

QA

4

QA

5

QA

6

Tot

al

1

2

3

4

5

6

7

8

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

0

1

0

0

1

1

1

1

1

1

1

1

0

1

0.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

4

5

5

5

4

6

4

4

5

5

6

5

6

5

6

5

4

5

4

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

3

2

3

3

3

4

3

5

3

6

3

7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

0

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

0.5

1

1

0.5

1

1

1

1

1

1

1

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

5

5

5

6

4

4

4

4

5

6

4.5

4

5

5

6

5

5

5

5

4

1

4

2

4

3

4

4

4

5

4

6

4

7

4

8

4

9

5

0

5

1

5

2

5

3

5

4

5

5

5

6

5

7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

1

1

1

0

1

0.5

0.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

1

1

1

1

1

1

1

1

1

0.5

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

6

6

5

5

5

5

5

5

5

5

4

6

4

4.5

5

5

5

3691 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

3

8

3

9

4

0

5

8

 Table 7: Details of Primary Studies

S.No Title Author Yea

r

P1 Model-based automatic test case generation for

automotive

embedded software testing

Henny B. SipmaToms E.

UribeZohar Manna

201

8

3692 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P2 Generating Tests from UML Specifications Jeff OffuttAynur Abdurazik 200

3

P3 Automated Test Case Generation from Dynamic

Models

Peter FrhlichJohannes Link 200

0

P4 UML-Based Statistical Test Case Generation Matthias RiebischIlka

Philip-

200

2

 powMarco Gtze

P5 Generating test cases from UML activity diagram

based on

Wang Linzhang; Yuan

Jiesong;

200

5

 Gray-box method Yu Xiaofeng; Hu Jun; Li

Xuan-

 dong; Zheng Guoliang

P6 Generation of Optimized Testsuites for UML

Statecharts

Tilo MckeMichaela Huhn 200

4

 with Time

P7 Generating and evaluating effectiveness of test

sequences

A. PretschnerO.

 SlotoschE.

201

7

 using state machine AiglstorferS. Kriebel

P8 Using adaptive agents to automatically generate

test sce-

Dong Xu; H. Li; C. P. Lam 200

5

 narios from the UML activity diagrams

P9 Automatic Test Case Generation from UML

Sequence Di-

M. Sarma; D. Kundu; R. Mall 200

8

 agram

P10 Automatic Test Case Generation from UML Models M. Sarma; R. Mall 200

5

P11 Test case generation by means of UML sequence

diagrams

E. G. Cartaxo; F. G. O. Neto;

P.

200

7

 and labeled transition systems D. L. Machado

P12 A state-based approach to integration testing

based on

Ali, Shaukat; Briand, Lionel

C.;

200

7

 UML models Rehman, Muhammad

Jaffar-ur;

 Asghar, Hajra; Iqbal,

Muham-

 mad Zohaib Z.; Nadeem,

Aamer

P13 Testing UML designs Pilskalns, Orest; Andrews,

An-

200

7

3693 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

 neliese; Knight, Andrew;

Ghosh,

 Sudipto; France, Robert

P14 Automatic test case generation from UML

communication

Samuel, Philip; Mall,

Rajib;

200

7

 diagrams Kanth, Pratyush

P15 Automatic test case generation using unified

modeling lan-

P. Samuel; R. Mall; A. K.

Bothra

200

7

 guage (UML) state diagrams

P16 Deriving Input Partitions from UML Models for

Automatic

Stephan WeilederBernd-

Holger

200

8

 Test Generation Schlingloff

P17 Conformance Testing Based on UML State

Machines

Dirk Seifert 200

8

P18 Validation and automatic test generation on UML

models:

Gustavo CabralAugusto

Sam-

200

8

 the AGATHA approach paio

P19 UML Activity Diagram-Based Automatic Test Case

Gen-

M. Chen; X. Qiu; W. Xu;

L.

200

4

 eration For Java Programs Wang; J. Zhao; X. Li

P20 TSGen: A UML Activity Diagram-Based Test

Scenario

C. Sun; B. Zhang; J. Li 200

7

 Generation Tool

P21 Test Cases Generation for Embedded Real-Time

Software

Y. Yongfeng; L. Bin; L.

Minyan;

200

9

 Based on Extended UML L. Zhen

P22 Automatic generation of test specifications for

coverage of

Sarma, M.; Mall, R. 200

9

 system state transitions

P23 Generating Test Plans for Acceptance Tests from

UML Ac-

A. Heinecke; T. Brckmann;

T.

201

0

 tivity Diagrams Griebe; V. Gruhn

P24 A Novel Approach to Generate Test Cases Using

Class and

Shireesh AsthanaSaurabh

Tri-

201

0

 Sequence Diagrams pathiSandeep Kumar Singh

3694 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P25 A Hybrid Genetic Algorithm Based Test Case

Generation

Mahesh ShiroleRajeev

Kumar

201

0

 Using Sequence Diagrams

P26 An enhanced test case generation technique

based on ac-

P. N. Boghdady; N. L. Badr;

M.

201

2

 tivity diagrams A. Hashim; M. F. Tolba

P27 Test case generation approach for industrial

automation

R. Hametner; B. Kormann;

B.

201

2

 systems Vogel-Heuser; D. Winkler;

A.

 Zoitl

P28 Construction of Test Cases from UML Models Vinaya SawantKetan Shah 201

1

P29 Fault-Based Generation of Test Cases from UML-

Models

Rupert

 SchlickWolfga

ng

201

1

 Approach and Some Experiences HerznerElisabeth Jbstl

P30 A Study on Test Case Generation Based on State

Diagram

Woo Yeol KimHyun Seung

Son-

201

1

 in Modeling and Simulation Environment Robert Young Chul Kim

P31 Test Case Design Using Slicing of UML Interaction

Dia-

Swain, Ranjita Kumari;

Panthi,

201

2

 gram Vikas; Behera, Prafulla

Kumar

P32 Test Case Generation Using Activity Diagram

and Se-

Abinash TripathyAnirban

Mitra

201

3

 quence Diagram

P33 Interaction Diagram Based Test Case Generation Rohit KumarRajesh K.

Bhatia

201

2

P34 Testcases Formation Using UML Activity Diagram P. E. Patel; N. N. Patil 201

3

P35 Extenics-based Test Case Generation for UML

Activity

Li, Liping; Li, Xingsen; He,

Tao;

201

3

 Diagram Xiong, Jie

P36 Automated Method for Software Integration

Testing Based

Dominykas

 BarisasEduar

das

201

3

 on UML Behavioral Models Bareia arnas Packeviius

P37 An Automatic Generation Strategy for Test Cases Dandan HeLijuan 201

3695 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

Based WangRuijie 3

 on Constraints Liu

P38 Techniques and Toolset for Conformance Testing

against

Joo Pascoal FariaAna C.

R.

201

3

 UML Sequence Diagrams PaivaMrio Ventura de

Castro

P39 Automatic test case generation through

collaboration dia-

Arvinder KaurVidhi Vig 201

8

 gram: a case study

P40 A Graph Transformation Approach for

Automatic Test

Parosh Aziz AbdullaK.

Rustan

201

5

 Cases Generation from UML Activity Diagrams M. Leino

P41 Information Systems Requirements Specification

and Us-

Neringa SipaviienKristina

Smil-

201

4

 age in Test Case Generation gytRimantas Butleris

P42 Generating Test Data from a UML Activity

Using the

Felix KurthSibylle

 Schupp-

201

4

 AMPL Interface for Constraint Solvers Stephan Weileder

P43 Slicing-based Test Case Generation from UML

Activity

scar Snchez RamnJess

Snchez

200

9

 Diagrams CuadradoJess Garca Molina

P44 Test Case Generation and Optimization using

UML Mod-

Khurana, Namita; Chillar, R.

S.

201

5

 els and Genetic Algorithm

P45 A Novel Approach to Generating Test Cases with

Genetic

Sao KarakatiTina

Schweighofer

201

5

 Programming

P46 Test Case Creation from UML Sequence Diagram:

A Soft

Ajay Kumar JenaSantosh

Kumar

201

5

 Computing Approach SwainDurga Prasad

Mohapatra

P47 Automatic test case generation for structural

testing of

Wu, Huayao; Nie,

Changhai;

201

4

 function block diagrams Kuo, Fei-Ching

P48 Automated Testing of Distributed and

Heterogeneous Sys-

Bruno LimaJoo Pascoal

Faria

201

6

 tems Based on UML Sequence Diagrams

3696 | Preeti Malik Generating Test Cases Automatically From Uml Diagrams:

A Systematic Literature Review

P49 Test generation from state based use case models Zuohua DingMingyue Jiang- 201

4

 Haibo ChenZhi

 JinMengchu

 Zhou

P50 Test data generation for web application using a UML

class

Joo Pascoal FariaAna C. R. 201

1

 diagram with OCL constraints Paiva

P51 A prototype tool for generating and executing test

cases

A. Thomas; J. Kimball 201

7

 from UML-based interface behavior descriptions

P52 Automated Test Case Generation from UML Activity

Dia-

Meiliana; Septian,

 Irwandhi;

201

7

 gram and Sequence Diagram using Depth First Search

Al-

Alianto, Ricky

 Setiawan;

 gorithm Daniel; Gaol, Ford Lumban

P53 Prioritizing test scenarios from UML communication

and

rica Ferreira de SouzaVal- 201

4

 activity diagrams divino Alexandre de

Santiago

 JniorNandamudi

 Lankalapall

i

 Vijaykumar

P54 Automatic Test Case Generation for UML Activity

Dia-

Shruti JaiswalDaya Gupta 200

6

 grams

P55 Automatic feasible transition path generation from

UML

Choi, Yoo-Min; Lim, Dong-Jin 201

8

 state chart diagrams using grouping genetic

algorithms

P56 EasyTest: An Approach for Automatic Test Cases

Genera-

Fernando Augusto Diniz

Teix-

201

8

 tion from UML Activity Diagrams eiraGlaucia Braga e Silva

P57 Efficient test case generation for validation of UML

activ-

Arvinder KaurVidhi Vig 201

0

 ity diagrams

P58 Synthesis of test scenarios using UML activity

diagrams

Ashalatha Nayak

 Debasis

201

1

 Samanta

