
Ilkogretim Online - Elementary Education Online, 2021; Vol 20 (Issue 3): pp. 4751-4760
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2021.03.486

4751 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

Anil Negi Asst. Professor, Department of Mathematics, Graphic Era Hill University,

Dehradun Uttarakhand India.

Abstract

Computational Complexity Theory is a fundamental field in Theoretical Computer Science

that analyzes the resources required to solve computational problems. It provides a

framework for understanding the efficiency and limitations of algorithms, enabling us to

classify problems into different complexity classes based on their inherent difficulty. This

paper presents an analysis of Computational Complexity Theory and its applications in

Theoretical Computer Science. The class co-NP and the idea of NP-completeness are two

additional complexity classes beyond P and NP that are covered in the paper. It examines

why it is thought that NP-complete problems are computationally challenging and

investigates their significance in defining the limits of intractability. In order to understand

the links between different complexity classes, the concepts of reduction and completeness

are explained. In a variety of fields, the uses of computational complexity theory are

investigated. The relevance of complexity assumptions in cryptography, where secure

communication and encryption algorithms are built on them, is discussed in the study. It also

emphasises the significance of understanding problem complexity in algorithm design,

optimisation, machine learning, and artificial intelligence, where this knowledge helps direct

effective solution approaches.

Keywords: Complexity, Turing machine, notation, optimization.

I. Introduction

The exploration of computational complexity theory across several domains is explored in

the paper. It focuses on the significance of complexity assumptions in cryptography, where

they form the basis of encryption techniques and secure communication. The importance of

understanding problem complexity in algorithm design, optimisation, machine learning, and

artificial intelligence is also highlighted. The development of effective solution techniques in

various domains is greatly influenced by this understanding. The study emphasises the value

of computational complexity theory in diverse fields of research and practise by exploring

its applications. We can generalise algorithm run outcomes across various issue instances,

machines, and implementations thanks to computational models.

4752 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

Lacking such models, it would be difficult to create a theory based on the intricate details of

these actual things' characteristics. Furthermore, even if we were able to develop such a

theory, it would probably be of little use in practise because it would need to be adjusted for

every different hardware combination. Instead, we are able to describe execution time as a

function of problem size, regardless of particular processors or machines, thanks to

computational models. Time is assessed in this context by the number of steps needed to

solve a certain issue instance, offering a more generalised and abstract viewpoint.

The demand for effective algorithms that can tackle challenging problems across a variety of

fields is rising as a result of technology's quick development. However, not all problems can

be resolved fast, and it is important to grasp their underlying computational complexity in

order to assess if it is possible to come up with effective solutions. A useful approach for

problem analysis and classification based on computational needs is computational

complexity theory.

This essay's main goal is to examine the core ideas of computational complexity theory and

how they apply to practical situations. We will examine the main complexity classes,

including P, NP, and co-NP, and talk about how important it is for defining the limits of

computing tractability.

The Computational Complexity Theory has numerous and varied applications. We shall look

at its application to cryptography, where the creation of safe communication and encryption

techniques is supported by complexity assumptions. We will also look at its significance in

the design of algorithms, optimisation, machine learning, and artificial intelligence, where a

thorough comprehension of problem complexity directs the creation of effective solution

approaches.

This paper intends to shed light on the underlying principles that regulate the effectiveness

and complexity of computing problems by studying computing Complexity Theory and its

real-world applications. Making wise decisions about the feasibility of solving problems and

allocating resources is made easier with a better understanding of problem complexity.

II. Model of Computation

We define A as the collection of strings that machine M will accept in the context of machine

M and its language A. The connection L(M) = A states that the language A is the one that

machine M can understand. It is important to remember that even though a computer can

take several strings, it can only ever accept one language. This distinction enables us to

distinguish between the language that the machine generally understands and the collection

of accepted strings.

4753 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

It is typical to concentrate on strings made up of the binary letters "0," "1," to make the

analysis more straightforward. The application of the theory is not considerably constrained

by this decision. The fact that we can easily come up with a strategy for converting strings

from any finite alphabet into strings over the binary alphabet "0, 1" should not be

overlooked. We can explore the theory effectively using this encoding method without any

major limits on the kinds of alphabets used.

1. (DTM) Deterministic Turing Machine:

A control unit and a memory unit are the components of a deterministic Turing machine

(DTM). While the memory unit is represented as an eternally expanding tape divided into

tape squares or cells, the control unit contains a limited number of states. One of a limited

number of tape symbols is stored in each tape square. A read/write tape head, which scans

one tape square at a time, serves as the conduit for communication between the control unit

and the tape. A Turing machine's configuration is an extensive record of all data pertinent to

computation, including the current state, symbols on the tape, and the tape head's location.

Figure 1: Step wise execution DTM

2. Non-Deterministic Turing Machine (NTM)

Since there is only one move required for each configuration and only one possible next

configuration, the Turing machine previously described is deterministic. The machine is

referred to as a nondeterministic Turing machine (NTM) if we permit multiple movements

for some configurations, creating more than one possible next configuration. Changing a

machine's configuration, or moving from one configuration to another, is the general

definition of computing. In the end, a finite amount of computations take us from the

machine's initial state to a target state, which symbolises the intended outcome of the

current problem.

III. Big-O Notation

4754 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

It is important to pick a specific computing model and examine the resources needed by that

model to solve the problems before discussing the complexity of computational challenges.

By comparing examples of various sizes, it is possible to compare two issues' fundamental

complexity in relevant ways. We can assess how much of the machine's resources, such as

time or space, are required to find answers to the issues by fixing a particular computational

model, such as a Turing machine or a computational model based on a certain algorithmic

paradigm. With this method, we may examine the effectiveness and complexity of problem-

solving within a clear computational framework.

If there are positive numbers c and d such that for all n d, the inequality f(n) ≤ c * g(n) holds

true, we write f(n) = O(g(n)) given the two functions f(n) and g(n) mapping positive integers

to positive integers.

F(n)< =cg(n)

cF(n)< =g(n)

We compare the growth rates of functions using notations like big-O, big-omega, and big-

theta in the context of function analysis.

When we write f(n) = O(g(n)), it means that there are positive integers c and d that exist such

that for any n d, f(n) is bounded above by c times g(n) for two functions, f(n) and g(n). To put

it another way, g(n) acts as a limit for f(n).

Similarly, if we write f(n) = g(n), it means that positive integers c and d exist such that for

any n d, f(n) is constrained below by c times g(n). G(n) serves as a lower bound for f(n) in

this situation.

We write f(n) = (g(n)) when both f(n) = O(g(n)) and f(n) = (g(n)) are true. This indicates that

when n approaches infinity, f(n) and g(n) grow at the same pace up to a fixed factor.

It's crucial to remember that these notations contrast function growth rates rather than their

exact values. As a result, even when f(n) = (g(n)), f(n) and g(n) can nevertheless have very

different values in reality.

For example:

The order of the polynomial f(x) = 6x4 - 2x3 + 5 is referred to as O(g(x)) or O(x4). According

to the concept of order, this indicates that there is a constant c such that, for all values of x

higher than 1, the absolute value of f(x), denoted by the symbol |f(x)|, is less than or equal to

c times the absolute value of g(x), denoted by the symbol |g(x)|. In other words, for every x

> 1, |f(x)| ≤ c|g(x)| holds true.

Proof:

4755 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

|6x^4 - 2x^3 + 5| ≤ 6x^4 + 2x^3 + 5 where x = 1

Applying the inequality relation, where x3 x4, results in:

6x^4 + 2x^3 + 5 ≤ 6x^4 + 2x^4 + 5x^4

Making the right side simpler:

6x^4 + 2x^4 + 5x^4 = 13x^4

As a result, we can write the phrase 13x4 instead of j6x4 - 2x3 + 5j.

Finally can write:

f(x)is O(g(x))as x−→ ∞

IV. Reduction Analysis

A reduction is a method for turning one issue into another in such a way that, if the second

issue can be resolved, the original issue can also be resolved. Consider the scenario where

you must find your way around a strange city. If you had a map of the city, it would be rather

easy. The situation serves as an example of reducibility. The difficulty in locating a map of

the city can be reduced to the difficulty of navigating the city. Mathematical examples of

reducibility can be discovered as well. For instance, it is possible to simplify the challenge of

solving a system of linear equations to the challenge of inverting a matrix.

a. Linear Reduction

Linear reductions are crucial to the study of complexity theory. The following is a definition

of the term "linear reduction" from Brassard and Bratley:

Let A and B represent two solvable issues. If an algorithm for problem B that operates in the

time complexity O(t(n)), where t(n) is any arbitrary function, implies the existence of an

algorithm for problem A that likewise operates in the time complexity O(t(n)), then A is said

to be linearly reducible to B, denoted as A l B. Accordingly, if problem B can be effectively

solved, then problem A can be effectively solved as well.

A and B are referred regarded as being linearly equal when both A l B and B l A are valid,

represented as A l B. In other words, two problems are deemed to be linearly comparable if

the existence of an effective solution for one problem implies the existence of an efficient

algorithm for the other problem. In complexity theory, linear reductions are a useful tool for

examining the connections between various issues and their computational complexity.

They enable us to make connections and gauge problems' relative complexity or simplicity

depending on how easily they may be reduced to one another. We can acquire insights into

4756 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

the intrinsic complexity and viability of doing computer jobs effectively by understanding

the linear reductions between issues.

b. Polynomial Reduction

Two issues, X and Y, shall exist. If there is an algorithm that can solve issue X in a time

complexity that would be polynomial if we ignored the time necessary to solve random

instances of problem Y, then problem X is said to be polynomially reducible to problem Y in

the sense of Turing, denoted as X T Y. In other words, the algorithm for solving problem X

can use a fictitious technique to magically solve problem Y without incurring any additional

costs.

In other words, if a good algorithm for solving problem Y already exists, then we can design

a good algorithm for solving problem X. In other words, if a good algorithm for solving

problem Y already exists, then we can design a good algorithm for solving problem X.

Without taking into account the extra time needed to solve instances of issue Y, the

polynomial reduction enables us to use the problem-solving abilities of problem Y as a

subroutine in solving problem X.

c. Traveling Salesman Optimization Problem:

Operations research and the sciences. In order to return to the starting city after visiting each

of a specified set of cities exactly once, the quickest path a salesman can take must be

determined.

The TSP will be indicated as follows:

Assume that the undirected graph G = (V, E) contains the set of cities V and the edges E that

connect them.

Let d(i, j) represent the travel time or distance between cities i and j.

Finding a Hamiltonian cycle a cycle that stops in every city precisely once is the goal of the

TSP in order to reduce the overall distance travelled.

A permutation of the cities, indicated as = (v_1, v_2,..., v_n), can be used to represent a solution

to the TSP, where v_i is the i-th city in the permutation. The total distance covered by a given

solution (π) is represented by the objective function for the TSP, which we can now define.

We'll write this function's name as f(π):

f(π) = Σ[d(v_i, v_i + 1)], for i = 1 to n − 1, + d(v_n, v_1)

4757 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

Finding the permutation that minimises the objective function f() is the aim of solving the

TSP. It is computationally difficult to solve the TSP optimally for big problem cases because

the number of permutations increases exponentially with the number of cities.

The TSP is approached and approximate solutions that are near to the optimal path are found

using a variety of methods and techniques, including genetic algorithms, ant colony

optimisation, greedy heuristics, and dynamic programming. These methods try to balance

the effectiveness of computation with the quality of the solutions.

d. Problems in NP-complete

The idea of NP-completeness is significant because it gives a concrete indication of how

difficult it is to solve a problem effectively. It is exceedingly improbable to uncover a

polynomial-time algorithm for a problem that has been shown to be NP-complete.

Theoretically, it is necessary to concentrate on an NP-complete problem in order to show

that P is not equal to NP. Showing the difficulty of any NP-complete problem would indicate

the existence of problems that cannot be solved effectively until P = NP because it is thought

that NP-complete problems take longer than polynomial time to solve.

Figure 2: NP-complete problem snapshot

On the other hand, finding a polynomial time technique for any NP-complete issue allows

one to demonstrate that P = NP. This would result in a fundamental advancement in the

theory of computer complexity by proving that all NP-hard problems can be effectively

addressed.

4758 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

NP-completeness has important ramifications in the real world. Researchers and

practitioners can use it as a reference point to avoid wasting time looking for polynomial

time solutions to situations that are known to be NP-complete. Although there is no

conclusive mathematical solution to the P vs NP dilemma, the notion that P is not equal to

NP is widely accepted. As a result, proving a problem to be NP-complete offers compelling

proof that it is fundamentally challenging and unlikely to have an effective polynomial-time

solution.

Researchers might concentrate their efforts on creating approximation algorithms,

heuristics, or specialised strategies to effectively tackle these challenging problems by

acknowledging the NP-completeness phenomena. It enables reasonable expectations for

computing effectiveness and stimulates investigation of other problem-solving strategies

outside the realm of precise algorithms.

V. Conclusion

For theoretical computer science applications, the examination of computational complexity

theory is of utmost significance. This field offers a framework for comprehending both the

resources needed to solve computational problems effectively and their intrinsic complexity.

Researchers and practitioners can choose wisely when inventing algorithms, streamlining

procedures, and creating intelligent systems by carefully considering complexity

assumptions, problem complexity, and algorithmic efficiency. The division of issues into

complexity classes like P, NP, and beyond is one of the major learnings from computational

complexity theory. This classification aids in determining a problem's tractability or

intractability and directs the creation of efficient algorithms. The discoveries made by

computational complexity theory have applications in a variety of fields. Complexity

assumptions are the foundation of safe transmission and encryption techniques in

cryptography. Complexity analysis directs the creation of effective algorithms for tackling

problems in algorithm design. Understanding the complexity of learning and optimisation

problems is helpful in selecting the right algorithms and modelling strategies in machine

learning and artificial intelligence. The foundation of theoretical computer science is

computational complexity theory, which offers vital insights into the intrinsic complexity of

issues and the effectiveness of algorithms. It gives academics the ability to evaluate and

compare the complexity of different problems, create effective algorithms, and create

workable solutions to challenging real-world problems. Computational complexity theory

research and applications are crucial for pushing the limits of what is computationally

possible and fostering innovation in computer science as technology develops further.

References:

1. L. Adleman and M.-D. Huang. Recognizing primes in random polynomial time. In Proc.

19th ACM Symposium on Theory of Computing, 1987, 462–469.

4759 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

2. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of

Mathematics, 160: 781–793 (2004).

3. Dorit Aharonov and Oded Regev. Lattice Problems in NP ∩ coNP. In Proc. 45th IEEE

Symposium on Foundations of Computer Science, 2004, 362–371.

4. Bautista-Valhondo, Joaquín & Pereira, Jordi. (2006). A GRASP algorithm to solve the

unicost set covering problem. Computers and Operations Research. 34.

5. Ignatiev, Alexey & Previti, Alessandro & Marques-Silva, Joao. (2015). SAT-Based

Formula Simplification. 10.1007/978-3-319-24318-4_21.

6. Mohammadi, Aboozar & Abadi, I.. (2012). Heuristic algorithm for solving the integer

programming of the lottery problem. Scientia Iranica. 19. 895–901.

10.1016/j.scient.2012.04.015.

7. Le Berre, Matthieu & Rebai, M. & Hnaien, Faicel & Snoussi, Hichem. (2015). A Specific

Heuristic Dedicated to a Coverage/Tracking Bi-objective Problem for Wireless Sensor

Deployment. Wireless Personal Communications. 10.1007/s11277-015-2548-2.

8. Haddadi, Salim & Cheraitia, Meryem & Salhi, Abdel. (2018). A Two-Phase Heuristic

for Set Covering. International Journal of Mathematics in Operational Research. 13,

No. 1. 61-78. 10.1504/IJMOR.2018.10013170.

9. Yin, Minghao. (2015). A novel local search for unicost set covering problem using

hyperedge configuration checking and weight diversity. Science in China Series F

Information Sciences. 60. 10.1007/s11432-015-5377-8.

10. Kim, Ji-Su & Lee, Dong-Ho. (2013). A restricted dynamic model for refuse collection

network design in reverse logistics. Computers and Industrial Engineering. 66. 1131-

1137. 10.1016/j.cie.2013.08.001.

11. Sondi, Patrick & Gantsou, Dhavy & Lecomte, Sylvain. (2013). Design guidelines for

quality of service support in Optimized Link State Routing-based mobile ad hoc

networks. Ad Hoc Networks. 11. 298-323. 10.1016/j.adhoc.2012.06.001.

12. Lin, Tzu-Hua & Woungang, Isaac. (2010). An Enhanced MPR-Based Solution for

Flooding of Broadcast Messages in OLSR Wireless ad hoc Networks. Mobile

Information Systems. 6. 249-257. 10.1155/2010/820453.

13. Clausen, Thomas Heide & Hansen, Gitte & Christensen, Lars & Behrmann, Gerd.

(2002). The optimized link state routing protocol, evaluation through experiments

and simulation.

14. Hariprasad S A. (2020). A Conjectural based Framework to Detect & defend/Classify

Selfish Nodes and Malicious Nodes in Manets Using AODV. 15. 08-15.

10.21172/ijiet.151.03.

15. Jerlin, Asha & Deverajan, Ganesh & Patan, Rizwan & Gandomi, Amir. (2020).

Optimization of Routing-Based Clustering Approaches in Wireless Sensor Network:

Review and Open Research Issues. Electronics. 9. 1630.

10.3390/electronics9101630.

4760 | Anil Negi Analysis Of Computational Complexity Theory For

Theoretical Computer Science Applications

16. Lalitha, K. & D, Rajesh Kumar & Gopal, Dhananjay & Gadekallu, Thippa & Aboudaif,

Mohamed & Abouel Nasr, Emad. (2020). A Heuristic Angular Clustering Framework

for Secured Statistical Data Aggregation in Sensor Networks. Sensors. 20. 4937.

10.3390/s20174937.

17. Konyeha, Susan & John-Otumu, Adetokunbo. (2020). An Improved Token-Based

Umpiring Technique for Detecting and Eliminating Selfish Nodes in Mobile Ad-hoc

Networks. Journal of Computer Science and Technology. 44. 74-85.

