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Abstract 

Numerous scientific and engineering applications depend heavily on the invention and 

optimisation of numerical methods for solving integral equations. Integral equations are 

used to model complicated processes in a variety of disciplines, including electromagnetics, 

acoustics, fluid dynamics, and image processing. However, due to their intrinsic 

mathematical complexity and the requirement for effective computer procedures, the 

solution of integral equations frequently presents substantial obstacles. In this study, we 

concentrate on the creation and improvement of numerical techniques for resolving integral 

equations. We investigate a number of methods, including boundary element methods, 

Galerkin methods, and collocation methods, among others, to effectively and precisely 

estimate the solutions. Striking a compromise between computational effectiveness and 

solution precision is the idea, making sure that the numerical methods deliver trustworthy 

results while utilising suitable processing resources. To do this, we research the use of 

cutting-edge optimisation strategies to boost the effectiveness of the numerical methods, 

including adaptive mesh refinement, sparse matrix computations, and quick algorithms. We 

aim to reduce the computational complexity and memory needs while retaining high 

solution accuracy by carefully examining the issue structure and taking advantage of its 

unique features. Through thorough numerical tests, the effectiveness of the suggested 

numerical approaches and optimisation methodologies is assessed. When analytical 

solutions are available or there are already existing numerical methodologies, we compare 

the findings to verify the correctness and effectiveness of our methods. We also examine the 

effects of several parameters on the overall performance and convergence behaviour, 

including the mesh density, basis functions, and numerical quadrature. 

Keywords: integral equations, numerical techniques, boundary element method, Galerkin 

method, collocation method. 

I. Introduction 

The computation-based solution of integral equations is a crucial component of scientific 

study because they naturally occur in many scientific and technical domains [1]. Numerous 
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fields, including medicine, continuum mechanics, electricity and magnetism, radiation 

potential theory, geophysics, renewal theory, particle transport problems in astrophysics, 

quantum mechanics, optimisation, optimal control systems, communication theory, 

mathematical economics, population genetics, the kinetic theory of gases, queuing theory, 

radiative equilibrium, and reactor theory, among others, find use for these.  The Fredholm 

integral equation is one of the many varieties of integral equations and is very significant. 

The creation and application of effective numerical techniques is required for 

computationally solving integral equations. To estimate answers and address the 

mathematical difficulty involved with integral equations, researchers use computer 

methods[8]. 

Numerical method design and optimisation are required to address these issues. Several 

methods, including boundary element methods, Galerkin methods, and collocation methods, 

are investigated in order to efficiently approximate the solutions of integral equations while 

maintaining accuracy. Numerical[2] methods are improved by using advanced optimisation 

techniques such adaptive mesh refinement, sparse matrix calculations, and quick algorithms. 

Numerous numerical tests are carried out to verify the precision and effectiveness of the 

suggested numerical approaches. Results are contrasted with existing numerical techniques 

or, when available, analytical solutions. Additionally, the effects of variables on overall 

performance and convergence behaviour are examined, including mesh density, basis 

functions, and numerical quadrature. In conclusion, it is critical to build and optimise 

numerical methods for solving integral equations in order to overcome the difficulties these 

equations provide in a variety of scientific and technical domains [4-5]. 

Integral equations [10] are mathematical equations that are produced by the application of 

particular integral operators to points in a vector space of integrable functions. There are 

several approximations that can be constructed to solve integral equations when taking into 

account function places crossed by the polynomials and separable kernel functions made of 

polynomials. In scientific study, the computational method for resolving integral equations 

is crucial. Second-kind Fredholm integral equations can be solved using a variety of 

strategies. These consist of the variational iteration method (VIM), the [11] B-spline wavelet 

method and moments-based B-spline wavelet method. Researchers have also looked into 

numerical methods including the Taylor series expansion, Block-Pulse functions, and the 

Rationalised Haar functions method for the solution of linear Fredholm integral equation 

systems.  

II. Integral Equation for Fredholm 

The basic general system of a linear Fredholm integral equation can be written as follows: 

H(x)Y(x) =  F(x) +  λ∫ a
k(x,t)

y(t)dt
 (1) 
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Here, A and B are constants, F(x), H(x), and K(x, t) are well-known functions, and y(x) is the 

unknown function in the given linear Fredholm integral equation. The integral 

equation's   nonzero eigenvalue is represented by the symbol. The integral equation's kernel 

is referred to as the function K(x, t). 

a) Integral Equation (Fredholm) of First Kind: 

By making g(x) = 0 in (1), the following is how a linear integral equation is presented: 

F(x) +
λ∫ [a,b]k(x,t)

y(t)dt
=  0 (2) 

b. Integral Equation (Fredholm) of Second Kind: 

By making g(x) = 1 in (1), the linear integral equation has the following form. 

y(x) =  f(x) +  ∫ K(x, t) y(t)dt  (3) 

c. Second order linear integral Equation (Fredholm): 

A system of second-order linear Fredholm integral equations has the following general form: 

 

∑(Gᵢ,ⱼ Yⱼ(x)) = Fᵢ(x) + [∑(∫kᵢ,ⱼ(x, t) /yⱼ(t) dt)]  (4) 

 

III. Linear Fredholm Integral Equation Numerical Methods 

The goal of numerical approaches for linear Fredholm integral equations is to approximate 

the solutions of these equations. For this, a variety of numerical techniques have been 

created and applied. Several frequently used techniques include: 

a. B-Spline Wavelet Method 

Using the provided basis, any function can be written as a wavelet series in L2(R). The 

wavelet series, however, is unable to adequately represent the function for the limited 

interval [0, 1] because some basis functions are truncated at the interval's ends. To address 

this, the wavelet expansion on the finite interval is extended using a special basis known as 

the boundary scaling functions and boundary wavelet functions. These boundary functions 

are intended to capture how the function behaves close to the interval borders and to make 

it possible to express the finite interval more precisely.  

a =  x −  m +  1 =  x0 <  x1 <  …  <  xₙ =  xₙ+1  (5) 

The function written as 
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Bₘ, ⱼ, X(x)  =  (x −  xⱼ + m − 1) − (x −  xⱼ)Bₘ₋₁, ⱼ, X(x) 

y(x)  =  f(x)  +  ∫  K(x, t) F(y(t)) dt 

B₁(x)  =  1, x ∈  [xⱼ, xⱼ + ₁), 0, otherwise 

The two scaling relationships associated with m-order semi orthogonal easily provided B-

wavelet forms are defined as follows: 

• Scaling Relation: 

ϕₘ,ⱼ,𝑋(𝑥) = √2 ϕₘ₋₁,ⱼ,𝑋(2𝑥 - 𝑥ⱼ - 𝑥ⱼ₊₁) 

• Wavelet Relation: 

ψₘ,ⱼ,𝑋(𝑥) = √2 ϕₘ₋₁,ⱼ,𝑋(2𝑥 - 𝑥ⱼ - 𝑥ⱼ₊₁) - ϕₘ₋₁,ⱼ,𝑋(𝑥) + ϕₘ₋₁,ⱼ₊₁,𝑋(𝑥) 

In terms of the m-1 order B-wavelet and B-scaling functions, these relations express the m-

order B-wavelet functions. The wavelet relation depicts how the wavelet function at scale m 

is made up of contributions from the m-1 order scaling and wavelet functions, whereas the 

scaling relation depicts how the scaling function at scale m is related to the scaling function 

at scale m-1. Based on the lower-order functions, these relations offer a recursive 

construction for creating the m-order B-wavelet functions. The wavelet function as follows: 

ψₘ, ⱼ₀, ᵢ(2x)  =  { 

ψₘ, 2j −  2(m +  1 −  ᵢ), ᵢ (1 −  2ᑗ −  ᑗ₀x) 

if ᵢ =  −m +  1, … , −1, ψₘ, 2ᑗ −  2ᑚ0
ᑥ −  2 −ᑗ0ᵢ, ᵢ 

if ᵢ =  2ᑗ −  2(m +  2), … , 2ᑗ −  ᑚ0, 

1 −  m, . . . , 2 −  m, otherwise} 

b. Fredholm Integral Equation with Application of the Quadrature Method: 

Using the quadrature approach, the nonlinear Fredholm-Hammerstein integral problem has 

been solved in this section.. 

=+ 2 ∑ (𝑥, 𝑡2𝑗) (𝑢2𝑗) 

Where, 𝑗=1,2,3,…… 

The following procedure is used to solve a definite integral using quadrature techniques like 

the Simpson rule and modified trapezium method. 

This section applies the quadrature method to a nonlinear Fredholm-Hammerstein integral 

problem. An illustration of the equation is as follows: 
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(𝑥) = F(𝑥) + 2∑ 𝐾(𝑥, 𝑡₂𝑗)/𝐹(𝑢₂𝑗) 

The definite integral in the equation is solved using the quadrature methods, which include 

Simpson's rule and the modified trapezium method.. 

One of the techniques is Simpson's rule, which divides the interval into smaller intervals and 

applies a quadratic polynomial to each smaller interval to approximate the integral. The 

Simpson's rule formula is as follows: 

∫f[𝑎, 𝑏] 𝑓(𝑥) 𝑑𝑥 ≈ ℎ/3 [𝑓(𝑎) + 4𝑓(𝑎+ℎ) + 𝑓(𝑏)] 

The equation can be converted into a system of algebraic equations by applying Simpson's 

method to the integral and taking into account x = x0, x1,..., xn and t = t0, t1,..., tn: 

(𝑥ᵢ) = (𝑥ᵢ) + ℎ/3 [𝑓(𝑥₀) + 4∑ 𝐾(𝑥ᵢ, 𝑡₂𝑗-₁)𝐹(𝑢₂𝑗-₁) + 𝑓(𝑥ₙ)] 

where h represents the step size and has the formula h = (b - a)/n. 

It is possible to figure out the unknown function u(x) by resolving this system of equations. 

c. Modified Trapezoid Rule 

It displays an integral equation with the specified solution, u(x). It can be written as follows: 

𝑢(𝑥) = 𝑓(𝑥) + 𝑛⁻¹(ℎ/2)[2𝐾(𝑥, 𝑡₀)𝐹(𝑢₀) + ∑ 𝐾(𝑥, 𝑡ⱼ)𝐹(𝑢ⱼ)] 

Consider a different equation that was created by approximating the definite integral with 

the trapezium rule. By substituting x with xi, we obtain: 

𝑢(𝑥ᵢ) = 𝑓(𝑥ᵢ) + 𝑛⁻¹(ℎ/2)[2𝐻(𝑥ᵢ, 𝑡₀)𝐹(𝑢₀) + ∑ 𝐾(𝑥, 𝑡ⱼ)𝐹(𝑢ⱼ)] 

In order to simplify the formulas and introduce the notation  

H(x, t) = h[J(x, t0)F(u0) + K(x, t0)u0],. 

The answer at point xi is denoted by the symbol u(xi) in the equation. While the terms 

involving H(x, t0) and H(x, tn) in the summing account for the boundary conditions, the 

terms involving K(x, tj) in the summation correspond to the contributions from the integral 

operator. 

The unknown function u(x) can be found by solving the system of equations shown using the 

supplied function f(x), the kernel function K(x, tj), and the values of u0 and uj at the given 

points t0 and tj. The integral can be approximated numerically via the trapezium rule, 

allowing the computation of u(xi) for each xi. 

d. Wavelet Galerkin Method: 



 

4774 | Rajesh Kumar Tripathi               Design And Optimization Of Numerical Methods 

For Solving Integral Equations 

In this section, a nonlinear Fredholm integral problem of the second class is solved using the 

Wavelet Galerkin method. The method makes use of continuous Legendre wavelets that are 

specified on the range [0, 1]. Two parameters a for dilation and b for translation define these 

wavelets. Introduced are the matrices C and  Ψ(𝑥), where Ψ(𝑥) is a 2k1M1 vector made up 

of wavelet functions i,j(x) and C is a 2k1M1 matrix created by concatenating 

coefficients  𝜓𝑖,𝑗(𝑥). By altering the parameters a and b, the wavelet transformation fields 

the wavelet functions. 

Furthermore, the Legendre wavelets are used to approximate the function k(x, t) specified 

on [0, 1] [0, 1]. The approximation is given by the expression Ψ(𝑡)𝐾Ψ(𝑥), where K is a matrix 

constructed in equation  with dimensions (2k1M2k1M) 

We introduce Legendre wavelets 𝜓𝑚,(𝑡) where k spans from 2 to n, n ranges from 1 to 2k, m 

denotes the rank of Legendre polynomials, and t is the normalised time. 

Legendre wavelets are also used to approximate a function's power. The operational vector 

of the pth power of the function y(x) is represented by the expression 𝑌∗𝑇Ψ(𝑥), where Y* is a 

column vector holding nonlinear combinations of the components in the vector Y. 

IV. Adomian Decomposition Method (ADM) 

A method known as the Adomian Decomposition Method (ADM) is frequently employed to 

resolve a variety of functional equations. It offers a solution in the form of an infinite series 

that typically converges to a precise answer. The equation can be written as follows in the 

context of the nonlinear Fredholm integral equation of the second kind:  

𝑢(𝑥) = 𝑓(𝑥) + ∫𝑎𝑏 𝐾(𝑥, 𝑡)(𝐿(𝑢(𝑡)) + 𝑁(𝑢(𝑡))) 𝑑𝑡, 

where L(u(t)) and N(u(t)) are the linear and nonlinear terms, respectively. 

The answer u(x) is broken down using the Adomian Decomposition Method into an endless 

series of terms, indicated as  

(𝑥):𝑢(𝑥) = ∑ 𝑢𝑚(𝑥), (160) 𝑚=0 

Additionally, the nonlinear term Nu can be shown as follows: 

𝑁𝑢 = ∑ 𝐴𝑛, (161) 𝑛=0 

The partial derivatives of N(u) with regard to the coefficients n of the Adomian polynomials 

are used, The ADM technique enables the estimation of the coefficients um(x) and An 

through a recursive procedure by substituting the series representation of u(x) and Nu into 

the integral equation. 

V. Conclusion 
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In the subject of computational mathematics and engineering, the invention and 

optimisation of numerical methods for solving integral equations are essential. These 

techniques provide quick and precise answers to a variety of integral equation-based issues, 

including those that arise in physics, biology, economics, and many other fields. We have 

investigated numerous numerical techniques for solving integral equations in this study, 

including direct, iterative, and spectral techniques. The choice of approach depends on the 

particular issue at hand as well as the required accuracy and efficiency criteria. Each method 

has benefits and disadvantages. The accuracy and computational cost of various numerical 

approaches must be carefully balanced throughout design. The computational cost of these 

methods has been decreased, and their convergence qualities have been improved, by the 

development of effective algorithms and procedures. Integral equations can be solved much 

more effectively, for instance, when adaptive mesh refinement, preconditioning methods, 

and quick algorithms like the Fast Multipole Method (FMM) are used. The effectiveness of 

these numerical techniques is greatly enhanced by optimisation. To further improve the 

effectiveness and precision of the answers, strategies including parameter tuning, adaptive 

algorithms, and parallelization might be used. Furthermore, for the practical uses of these 

technologies, the creation of effective and reliable software implementations is crucial.  

There are still numerous difficulties and chances for further research in the domain of 

studying integral equations and their numerical solutions. Future research might 

concentrate on the creation of hybrid approaches that combine the advantages of several 

numerical techniques or on the exploration of novel ideas like machine learning-based 

approaches to solving integral equations. Numerous scientific and technical sectors have 

benefited greatly from the design and optimisation of numerical techniques for solving 

integral equations. There is little question that additional improvements in computational 

mathematics and the effective solution of challenging problems will result from further 

research and development in this field. 
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