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Abstract 

Numerous scientific and engineering disciplines, such as aerospace, environmental science, 

and materials engineering, depend heavily on fluid dynamics. For defining and analysing the 

intricate behaviour of fluids in these applications, PDEs offer a potent framework. The 

overview of the basic equations regulating fluid dynamics, such as the continuity equation, 

Navier-Stokes equations, and energy equation, comes first in the analysis. These equations 

make up a collection of linked nonlinear PDEs that depict how mass, momentum, and energy 

are conserved in fluid systems. We look at the mathematical characteristics of these PDEs, 

including their well-posedness and existence of solutions. Additionally, various numerical 

approaches, including as spectral, finite element, and finite difference methods, are 

investigated for solving these PDEs. Fluid dynamics simulations are used to discuss the 

benefits and drawbacks of each strategy. Additionally, methods for dealing with stability 

problems, discretization mistakes, and boundary conditions are researched. The 

investigation of particular applications of fluid dynamics modelling, including flow in porous 

media, turbulent flows, and multiphase flows, is also covered in this work. Examined are the 

difficulties brought on by these applications and the resulting adjustments to the governing 

PDEs. 

Keywords: Differential Equation, Fluid Dynamics, Nonlinear equation, mathematical 

modelling. 

I. Introduction 

In the field of study known as fluid dynamics, liquids, gases, and their interactions with the 

environment are all considered to be fluids. In many scientific and engineering fields, 

including aeronautical engineering, environmental science, and materials engineering, an 

understanding of the ability to anticipate fluid dynamics is essential. Partial differential 

equations (PDEs)-based mathematical modelling offers a potent framework for describing 

and examining fluid flow processes. The conservation of mass, momentum, and energy is one 

of the basic concepts from which the governing equations of fluid dynamics are commonly 

derived. The continuity equation, Navier-Stokes equations, and energy equation are all part 

of this system of coupled nonlinear PDE equations. Important fluid parameters including 



 

4779 | Sandeep Kumar             Analysis Of Partial Differential Equations For 

Mathematical Modeling Of Fluid Dynamics 

velocity, pressure, and temperature distributions can be predicted by solving these 

equations. There are numerous significant components to the investigation of PDEs in fluid 

dynamics. To assure the well-posedness, existence, and uniqueness of solutions, it is 

essential to first grasp the mathematical characteristics of these equations. It is also looked 

at how solutions behave under varied beginning and boundary conditions. 

Since analytical solutions are frequently unavailable for complicated systems, numerical 

approaches are essential for solving fluid dynamics PDEs. Among the methods frequently 

employed for discretizing and resolving these equations are the spectral, finite difference, 

and finite element approaches. In terms of accuracy, computing effectiveness, and capability 

to handle complicated geometries, each method has its advantages and disadvantages. 

In fluid dynamics modelling, boundary conditions are crucial because they depict the 

interaction between the fluid and its environment. For realistic simulations, the selection 

and application of suitable boundary conditions are essential. Additional difficulties that 

numerical approaches must carefully address to produce reliable results are discrepancy 

and stability issues. Numerous real-world situations, such as flow in porous media, turbulent 

flows, and multiphase flows, are subjected to fluid dynamics modelling. Each application 

comes with its own set of difficulties, such as nonlinearity, turbulence modelling, and 

interface tracking, which call for specialised adjustments to the governing PDEs and 

numerical methods. 

II. Review of Literature 

The mathematical modelling of fluid dynamics using partial differential equations (PDEs) 

has been the focus of much research and has attracted a lot of interest from the scientific 

community. This field has advanced and been better understood thanks to a number of 

important works. Here, we go over a few significant contributions to this field: 

This [1] well-known textbook offers a thorough introduction to PDEs, including how they are 

used in fluid dynamics. Boundary value issues, the derivation and analysis of the Navier-

Stokes equations, and several numerical approaches to solving these equations are all 

covered. 

The author [2] focuses on numerical methods for solving PDEs, with a focus on how these 

methods can be applied to fluid dynamics. It covers the finite difference, finite element, and 

finite volume approaches as well as issues related to realistic implementation. 

This book offers a thorough introduction to computational fluid dynamics (CFD) [3], which 

includes PDE-based mathematical modelling of fluid flow. It talks about several numerical 

methodologies, turbulence modelling, and validation methods. It is a useful tool for 

comprehending how PDE-based fluid dynamics simulations are implemented. 
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The numerical techniques employed in fluid dynamics [4], particularly in the setting of 

geophysical flows, are the main topic of this text. It studies how to use the finite difference, 

finite volume, and spectral approaches to a variety of fluid flow problems. 

Research papers [5] from many different fields have helped to analyse and comprehend 

PDEs in fluid dynamics. Through studies of particular elements like numerical stability, 

adaptive mesh refinement, and interface tracking approaches, scholars including Charles-

Henri Bruneau, Philippe G. Ciarlet, and Stanley Osher have improved the discipline. 

The author [6] focuses on using the finite volume approach to solve fluid dynamics problems 

numerically. It gives a thorough overview of the concept and how to apply it to a variety of 

flow issues, including as compressible and incompressible flows. This well-known book 

examines the turbulence phenomenon in fluid mechanics. In order to comprehend and 

describe turbulent flows using PDEs, it explains the mathematical elements of turbulence, 

including the Kolmogorov theory [7]. 

An [8] in-depth discussion of numerical techniques for simulating fluid flows is provided in 

this book. It discusses turbulence modelling approaches, finite difference, finite element, and 

finite volume methods, with an emphasis on practical application and computational 

effectiveness. The study of fluid dynamics has greatly benefited from research publications 

by pioneers in the field that focus on Rayleigh. Their studies on a variety of topics, such as 

boundary layer theory, turbulence, and vorticity dynamics, have had an impact on the 

analysis and modelling of fluid flows using PDEs [9]. 

The Lagrangian and Eulerian theories of fluid motion, both of which are founded on 

continuum principles, are two unique ways in which fluid motion can be explained. 

Identification of specific components of fluid in motion is the main goal of the Lagrangian 

description. In this method, the labelled fluid element designated by b (representing the 

position vector at t = 0) is associated with a geometric transformation represented by the 

function x = x(b, t), which produces the position vectors x at various times t. It is assumed 

that the function x(b, t) and its inverse are both continuous with regard to both of their 

parameters. 

Definition for Fluid Motion: Let Λ₀ be any fluid-occupied open, bounded point-set in R3 at 

time t = 0. A transformation ψ on the closure of Λ₀, represented as  ȴ̄₀, into R3 that makes the 

point set t(0) the one that the same fluid is occupying at time t is used to depict fluid motion. 

Mathematically, this can be stated as: 

ψₜ: ȴ̄0 →  ℝ3   (1) 

Definition fluid Velocity: The formula for fluid velocity is u = x(b,t) on the domain of x(b,t). 

The position of the fluid element changes over time, as seen by the partial derivative of the 
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function x(b,t) represented in this equation with regard to time (t). Any given point in the 

domain of x(b,t) can receive information from the velocity vector u about the speed and 

direction of fluid motion. 

The Eulerian description is a way to describe fluid motion using a velocity field u that 

depends on position x and time t. Instead than tracking the motion of distinct fluid 

components as in the Lagrangian description, the emphasis in this framework is on 

characterising the fluid's velocity at various points in space and time. The investigation of 

flow patterns, vorticity, and other fluid dynamics phenomena is made possible by the 

velocity field u(x, t), which offers details about the instantaneous velocity at each location in 

the fluid domain.  

Both the Eulerian and the Lagrangian viewpoints are combined at the core of fluid dynamics, 

and switching between them is feasible. The equivalent Lagrangian representation of a 

physical quantity with an Eulerian representation f(x, t) is written as f(b, t) = f(x(b, t), t). The 

quantity is linked to the labelled fluid element at position b and time t according to the 

Lagrangian description, f(b, t). 

Df̂

Dt
=  (

∂f̂

∂t
) +  u ·  ∇f̂  (2) 

This equation represents the time rate of change of the Lagrangian representation f̂(b, t) with 

respect to time t, where (∂f̂/∂t) is the partial derivative of f̂ with respect to t. The term u · ∇f̂ 

represents the convective term, where u is the velocity field and ∇f̂ is the gradient of f̂. 

III. Mathematical representation with various flow techniques 

 

1. The Compressible Viscous Flow Navier-Stokes Equations 

The following differential equation translates the conservation of mass in the motion of a 

compressible, viscous (Newtonian) fluid: 

∂ρ/ ∂t + ∇  ·  (ρu)  =  0  (3) 

The fluid's density, and the velocity vector field, u, are represented in this equation, which is 

the continuity equation. While the phrase ∇ · (ρu)signifies the divergence of the mass flux, 

which accounts for the flow of mass into or out of a specific region in space, the term ∂ρ/∂ 

trepresents the temporal rate of change of density.  

∂ρ/ ∂t +  div(ρu)  =  0    (4) 

Equation describes how momentum is conserved. 
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ρ Dui =  ρfi −
∂p

∂xi
−

μ ∂(J ∂uk)

∂xi
+

∂(
μ ∂ui

∂xj
)

∂xj
    (5) 

The conservation energy is expressed by equation as: 

∂(ρE)

∂t
+

∂(ρuE)

∂xi
−  ρui fi −

∂(ui pij)

∂xi
+

k ∂T

∂xi
=  0    (6) 

These equations on the solid body do not satisfy the slip boundary condition, so 

ui = 0 on      (7) 

2. The Compressible Inviscid Flow Euler Equations 

The constitutive relation of the stress tensor equation reduces to: in the case of uniform flow. 

τij =  −pδij +  μ (∂ui/ ∂xj +  ∂uj/ ∂xi)  (8) 

The velocity gradient terms (ui/xj and (uj/xi)) and pressure (p), dynamic viscosity (μ), and 

the stress tensor pδij are all represented in this equation. The phrase pδij where pδij is the 

Kronecker delta symbol, denotes the isotropic pressure contribution to the stress tensor. 

∂ρ/∂t + div(ρu) = 0  (9) 

The conservation energy is expressed by equation as written as: 

∂(ρE)

∂t
+

∂(ρuE)

∂x
−  ρui fi −

∂(k ∂T)

∂x
=  0  (10) 

 

IV.  Turbulence Methodology and Its Modeling 

Experiments have revealed that the flow exhibits a smooth behaviour, where neighbouring 

layers of the fluid slide past one another in an organised fashion, when the Reynolds number 

(Re) is lower than the critical Reynolds number (Recrit). Laminar flow is the name for this 

type of flow, which is characterised by ordered and smooth motion. Unless the imposed 

boundary conditions vary over time, the flow is constant in the laminar flow regime. 

On the other hand, a complex chain of events takes place when the Reynolds number 

surpasses the critical Reynolds number (Re > Recrit), which results in a significant alteration 

in the flow properties. When the flow enters a turbulent regime, the behaviour changes from 

orderly to chaotic. Increasing Reynolds number, which is determined by the ratio of inertial 

forces to viscous forces in the fluid, leads to the shift from laminar to turbulent flow. As the 

Reynolds number rises above the critical point, the inertial forces begin to outweigh the 

viscous forces, which causes the laminar flow to break down and turbulence to begin. 
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The occurrence of eddying motions across a variety of length scales is a key feature in the 

visualisation of turbulent flow. Laminar flow does not contain these eddies. With a high 

Reynolds number, a typical flow domain of 0.1 m by 0.1 m can contain eddies that are 10 to 

100 m in size. There would be a need for computational meshes with billions to trillions of 

points in order to fully represent the processes occurring at all length scales. Time 

discretization with steps of around 100 s is required because the quickest events in turbulent 

flow occur at frequencies on the order of 10 kHz. 

Due to these difficulties, tracking the evolution of eddies in relatively simple flows at 

transitional Reynolds levels has only recently been practical using present computational 

capacity. For fully turbulent flows at high Reynolds numbers, direct simulation of the time-

dependent Navier-Stokes equations is still a difficult undertaking that requires major 

breakthroughs in computer technology [10]. 

However, approaches are needed to get enough data regarding turbulent processes without 

explicitly taking into account the effects of each particular eddy in the flow. The time-

averaged features of the flow, such as mean velocities, mean pressures, and mean stresses, 

can appropriately express such information. 

To research turbulent phenomena until it is more practical to model fully turbulent flows at 

high Reynolds numbers, these time-averaged properties offer insightful knowledge about 

the general behaviour of turbulent flows. 

 

Figure 1: Diagram show the expansion and Contraption of Mg Power 

a) Averaged Turbulent Quantities 

The equations of motion for the "mean" or time-averaged turbulent quantities are derived 

using the turbulent averaging procedure. The [15] goal of this averaging technique is to 

reduce the impact of turbulent fluctuations while maintaining the temporal dependence of 
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other phenomena with independent time scales. The following is the definition of a flow 

property's  φ(t, τ, x)  mean value Φ(t, x): 

Φ(t,x)=lim(T→∞)1

T
∫ [t −

T

2
, t +

T

2
] φ(t, τ, x)dτ  (11) 

The goal of turbulent averaging is to remove the turbulent oscillations, which are frequently 

quick and erratic, and concentrate on the flow's general behaviour. The impacts of 

turbulence can be represented in a more controllable and predictable way by taking into 

account the time-averaged values, such as mean velocities, mean pressures, and mean 

stresses. 

A density-weighted averaging method is developed for compressible flows to prevent the 

explicit appearance of products between variations in density and other variables. This 

method of averaging is described as: 

⟨φ⟩(t,x)=lim(T→∞)1

T
∫ [t−

T

2
,t+

T

2
]ρ(t,τ,x)φ(t,τ,x)dτ

v

t
lim(T→∞)1

T
∫ [t −

T

2
, t +

T

2
] ρ(t, τ, x)dτ     (12) 

In this definition, the term " ⟨φ⟩(t, x)" refers to the variable's density-weighted time average 

at a given time (t) and location (x). The density φ(t, τ, x)provides the average weights, and 

the averaging is done over a long time interval [t-T/2, t+T/2]. T stands for the amount of 

time the averaging procedure takes. 

The density-weighted averaging method makes it easier to formulate the equations of 

motion and analyse compressible flow phenomena [11] by separating the influence of 

density fluctuations from other variables. By concentrating on the density-weighted time 

averages of the relevant variables, it offers a way to derive meaningful and pertinent 

information about the flow. 

b) Navier-Stokes equations with Reynolds average 

We get the following results after using the density-weighted averaging procedure to the 

continuity equation: 

⟨∂ρ⟩

∂t
+  div(⟨ρu⟩) =  0  (13) 

The Reynolds stress tensor is introduced by the averaged momentum equations in the 

absence of body forces. In terms of averaged quantities, the averaged equations for 

momentum are as follows: 

∂⟨ρu⟩

∂t
+  div(⟨ρu ⊗  u⟩) =  −grad(⟨p⟩) +  div(⟨τ⟩)  (14) 
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The effects of turbulent fluctuations on the momentum transport are captured by the 

Reynolds stress tensor, ⟨τ⟩ or. It shows how the velocities fluctuate in relation to one another 

and helps maintain the flow's overall momentum equilibrium. Because it is symmetrical, the 

Reynolds stress tensor's components rely on the properties of the turbulent flow. 

V. PDEs' analytical aspects 

A crucial technique for resolving the Euler or Navier-Stokes equations in any domain is 

computational fluid dynamics (CFD) [20]. In order to solve partial differential equations 

(PDEs) accurately and effectively, numerical analysis of PDEs is crucial in computational 

fluid dynamics (CFD). The selection of the proper boundary conditions and numerical 

approaches for solving PDEs depends critically on their classification. In addition, the 

classification reflects the underlying physics through the various qualitative behaviours of 

the solutions. In general, PDEs can be categorised as elliptic, hyperbolic, or [17] parabolic 

depending on the sort of PDE they are inside a particular domain. It is vital to keep in mind 

that the type of equation may change within the domain, as in the case of transonic flow, and 

that sometimes the type may not be well specified, which makes numerical treatment more 

challenging. The Navier-Stokes equations have a dominating convective nature in the case of 

high-speed flows, making them resemble hyperbolic equations comparable to the Euler 

equations [13]. The solutions of these equations frequently contain discontinuities, such as 

shocks or contact discontinuities. Because strong answers might not exist in these 

circumstances, the idea of a weak solution becomes important. 

Numerous references [3, 116, 163, 88, 18, 42, 81, 130] include comprehensive information 

on the numerical handling of these equations. The conservative formulation of the equations 

will be presented in the following chapters, along with a brief explanation of the finite 

volume discretization technique used to solve the equations. Overall, for accurate and 

effective simulations in CFD, utilising appropriate numerical approaches is essential. This 

enables the analysis and prediction of fluid behaviour in a variety of applications. 

VI. Conclusion 

An important and fundamental part of researching and comprehending fluid behaviour is 

the analysis of partial differential equations (PDEs) for mathematical modelling of fluid 

dynamics. We are able to analyse and forecast the behaviour of fluids in a variety of 

situations thanks to the complimentary viewpoints that the Eulerian and Lagrangian 

descriptions of fluid motion offer.We have investigated the conservation laws, such as mass 

conservation and momentum conservation, which serve as the foundation for the 

mathematical modelling of fluid dynamics through the study of PDEs. The constitutive 

relations have been developed to explain the complicated behaviour of fluids, including 

viscosity, turbulence, and other physical phenomena. Examples of these relations include the 

stress tensor and the Reynolds stress tensor. Looking ahead, there are several attractive 
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directions for research in the analysis of PDEs for fluid dynamics. The accuracy, efficiency, 

and scalability of CFD simulations will first continue to improve thanks to new developments 

in numerical methods and algorithms, enabling more accurate and accurate modelling of 

complicated fluid flows. High-order numerical algorithms and adaptive mesh refinement 

approaches have been developed in order to capture fine-scale details and precisely resolve 

boundary layers. 

Furthermore, there are major difficulties in comprehending and modelling multiphase and 

multicomponent flows, such as those seen in environmental, healthcare, and industrial 

applications. It will be essential to improve PDE analysis techniques, such as interface 

capturing techniques and phase transition models, in order to simulate and forecast the 

behaviour of such complex systems. 
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