
 

Ilkogretim Online - Elementary Education Online, 2020; 19 (4): pp. 947-956 
http://ilkogretim-online.org  
doi:10.17051/ilkonline.2020.04.203 
 

A study on comparison analysis of the dnn, cnn, and rnn models 
for network anomaly detection 

Jiahang Ren, Department of Math, Computer Science, and Physics, Rockford University, 5050 E. State, 
Rockford, IL, 61108, U.S.A., jr170718@rockford.edu 
Jiayuan Cui, Department of Math, Computer Science, and Physics, Rockford University, 5050 E. State, 
Rockford, IL, 61108, U.S.A., jc171508@rockford.edu 
Mishaal Shah, Department of Math, Computer Science, and Physics, Rockford University, 5050 E. State, 
Rockford, IL, 61108, U.S.A., ms167347@Rockford.edu 
Jeong-Tak Ryu, School of Electronic and Communication Engineering, Daegu University, 201 Daegudae-ro, 
Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea, jryu@daegu.ac.kr 
Donghwoon Kwon, Department of Math, Computer Science, and Physics, Rockford University, 5050 E. State, 
Rockford, IL, 61108, U.S.A., dkwon@rockford.edu 
 
Abstract. With the widespread use of the Internet, network technology is used in a large amount in daily 
life, and the Internet and network are currently suffering from severe threats of network attacks. 
Network anomaly detection is one of the most significant issues in network security, and it is a core 
method to prevent cyber-attacks because it monitors network traffic data to figure out whether they are 
normal or abnormal. A variety of research frameworks have been proposed for network anomaly 
detection, and nowadays, deep learning-based methodologies are in the spotlight. For this reason, this 
research employed three deep learning models, i.e., Deep Neural Network (DNN), Convolutional Neural 
Network (CNN), and Recurrent Neural Network (RNN) models, with the public dataset, which is CICIDS 
2017 dataset to examine their effectiveness for network anomaly detection. After evaluating the three 
deep learning models with the CICIDS 2017 dataset, the experimental results show that all three deep 
learning models show satisfactory results and have high detection accuracy, precision, recall, and F1 
Score. This means that they could facilitate a more in-depth analysis of network data and identify 
anomalies faster. Besides, we observed that the DNN model outperformed the other two deep learning 
models, which achieved 98.14% of the overall detection accuracy. It proves that deep leaning models 
seem to be a robust potential tool for network anomaly detection in the cybersecurity field. 
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INTRODUCTION 

In recent years, our network technology has been developed and evolved rapidly. With the widespread 
use of the Internet, network technology is used in a large amount in daily life; for example, the Internet is 
used as the medium to communicate and transmit data between the physical devices or between the 
virtual domains [1]. Although the application of network-based technology is widely used in life, and the 
threat of network attacks has also been significantly increased. 122 million attacks were detected in 2016, 
and the number of cyber attacks is increasing every year [2]. By 2021, the cost of cybercrime is expected 
to reach $6 trillion annually, and cybersecurity spending may exceed $ 1 trillion from 2017 to 2021 [3]. 
Thus, a variety of models based on deep learning need to be used for network attack detection 
technologies to achieve reliable detection of network anomalies because of increasing severity, 
diversification, and complexity of the network attacks. In [4], the authors evaluated how three 
Convolution Neural Network (CNN) models with different internal depth such as shallow, moderate, and 
deep take effect on the performance in network anomaly detection. In this research, the evaluation 
models with three different preprocessed traffic datasets showed that deeper structures did not improve 
any performance compared to Fully-Connected-Network (FCN) and Long-Short-Term Memory (LSTM). 

This point led us to the following research question: which deep learning model does show the best 
performance with a pure binary classified dataset if the CNN model does not represent performance 
improvement over other deep learning models? 

In the field of deep learning model development related to network anomaly detection, a variety of 
deep learning models like Deep Neural Network (DNN), CNN, Recurrent Neural Network (RNN) with 
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LSTM and Gated Recurrent Units (GRU), etc. have been introduced [5-8]. Among them, we decided to 
adopt the DNN, CNN, and RNN models to answer our research question mentioned above using the pure 
binary classified dataset in this research because we think these are the three common models in the field 
of deep learning. The basic concepts of the three deep learning model we adopted are as follows: i) the 
DNN model is good at handling large-sized data problems. The purpose is to provide basic guidance in the 
field of deep learning, which has completely changed the natural language processing (NLP) field, ii) the 
CNN model has an advantage for processing grid-like data. It extracts position-invariant features, and iii) 
the RNN model is a neural network about spatial depth, and it is good at processing sequence-related data. 
Thus, it can model units well [9]. The pure binary classified dataset that we decided to use is the Intrusion 
Detection Evaluation (CICIDS 2017) dataset [10]. The CICIDS2017 data set contains two main labels, such 
as benign and Distributed Denial-of-Service (DDoS). Note that benign is a normal traffic label, and DDoS is 
a network attack label. Not only two labels, but it also includes other attributes like timestamps, source 
and destination IP, source and destination ports, etc. [10]. In the analysis of evaluating the three deep 
learning models with the CICIDS 2017 dataset, our experimental results show that the DNN model 
outperformed the other two deep learning models. 

This paper is organized as follows: Section 2 briefly discusses a description of the related studies 
with respect to deep learning models for network anomaly detection. Section 3 presents each deep 
learning methodology we examined, and evaluation results are discussed in Section 4. Section 5 

summarizes our research and described the conclusions and future work. 

MATERIAL AND METHOD 

The work in [11] proposed a taxonomy of the Intrusion Detection System focusing on shallow machine-
learning and deep learning. Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN), etc. belong to the shallow machine-learning category, and DNN, CNN, RNN, Generative 
Adversarial Networks (GANs), etc. belong to deep learning. Furthermore, the authors pointed out the pros 
and cons between shallow models and deep learning models shown in Table 1 below. 

Table 1. Pros and Cons Between Shallow Models and Deep Learning Models 

Category Shallow Models Deep Learning Models 

Running Time Short training and testing time 
Long training and testing time due to the high 
complexity 

Number of 
Parameters 

Less learnable parameters and 
hyperparameters 

More learnable parameters and 
hyperparameters 

Feature 
Representation 

A feature vector is required as an 
input 

A feature vector is not required and is able to 
learn feature representations from raw data 

Learning Capacity 
Do not have stronger fitting ability, 
but low risk of overfitting 

Have stronger fitting ability, but high risk of 
overfitting 

Interpretability Weak interpretability Strong interpretability 

 
Yet, the interesting point the authors mentioned is that deep learning models could have an ability 

to outperform shallow machine-learning models in most applications. 
As the example of deep learning-based network anomaly detection, both LSTM and CNN-based 

framework in conjunction with constructing block-based features for efficient feature extraction was 
proposed [12]. A variety of datasets were employed for extensive experiments, and the dataset that draw 
our attention was the CICIDS 2017 dataset. The authors reported that their proposed deep learning 
framework with the block-based features achieved 99.56% of the F1 score. 

DNN Model 

The fundamental architecture of the DNN model is to be composed of an input layer, one or multiple 
hidden layers, and an output layer [13]. There are numerous neurons in each layer, and they are 
connected with each other. Here, connections between the neurons in each layer refer to propagation. 
Specifically, the neurons in the input layer propagate values or features to the neurons in one or more 
hidden layers, and the hidden layer(s) propagate the weighted sums to the output layer. Moreover, the 
outputs of the neurons are activated by an activation function [13-14]. 

The brief concepts mentioned above could be mathematically explained in detail as follows; There 
are x inputs, and each neuron performs learning by assigning a weighted value (w) to each of its inputs (x)  
through the equation (1) below [15]: 
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Y(x) = wi  * xi + b (1) 
where Y(x) is the summation from multiplying the weights to the inputs, and w and b are weights 

and bias, respectively. Moreover, there is an activation function to transform the weighted inputs into the 
outputs. One of the many activation functions, i.g. sigmoid, tanh, Rectified Linear Unit (ReLU), etc. could 
be employed, and the primary role of the activation function is to convert the linear inputs into the non-
linear outputs [16]. 

The sigmoid non-linear activation function is mainly used in a feedforward neural network which 
is the skeleton of deep learning and is given by the following equation (2) [16]: 

 
(2) 

where z is Y(x), and the exp is an exponential calculation. The expected output from the sigmoid 
activation function is a probability in the range of 0 and 1, which means 0% through 100%.  

Natural language processing and speech recognition in the RNN mostly adopt the tanh activation 
function because it provides better training performance for multi-layer neural networks than the 
sigmoid function. Better training performance results from a zero-centered output in the range of -1 and 
1, and it is given by the following equation (3) [16]: 

 
(3) 

where z is Y(x), and the exp is an exponential calculation. Yet, the tanh function has a limitation that 
causes a vanishing gradient issue like the sigmoid function. 

Compared to the two activation functions mentioned above, the ReLU activation function is state-
of-the-art and gives a faster computation and better performance. In addition to these advantages, the 
ReLU function is powerful for eliminating the vanishing gradient issue, unlike both sigmoid and tanh 
functions. The main idea of this function is to make the input values zero if the values of the inputs are 
less than zero through the following equation (4) [16]:  

 
(4) 

The following Fig. 1 depicts a difference between these three activation functions graphically. 

 

 

FIG. 1. Activation functions 

The last activation function is based on a conditional probability distribution called the softmax 
function which produces an output in the range of 0 and 1 [16-17]. Here, the conditional probability 
means Pθ(y|x) where θ is a parameter, y is y RN that is generated by a classification model for a problem 
with N classes, and x is the inputs [17]. Furthermore, the softmax function is computed by the following 
equation (5) [16-17]: 

 

(5) 

where j is a class, and z is Y(x) as mentioned above. The softmax function is used in a multi-class 
model that returns the probabilities of each class. The target class has the highest probability, and it is 
mostly seen at almost every output layer in the deep learning architecture [16]. 

Among multiple activation functions that we introduced above, we decided to employ both ReLU 
and softmax activation functions in this research, and as shown in Fig. 2 below, our DNN architecture is as 
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follows: i) one input layer with seventy-eight features including two labels, ii) one hidden layer with sixty-
four neurons and the ReLU activation function, and iii) one output layer with a softmax layer. 

CNN Model 

One of the main deep learning types is CNN consisting of an input layer, one or more convolutional, 
pooling, and FCN layers, and an output layer [4], [18]. 

 

 

Fig. 2. Architecture of the DNN model 

In this model, each layer has a unique role; for instance, i) the input layer represents features, ii) 
the convolutional layer is used to learn feature representations of the inputs. Feature representation, also 
known as a feature map, is generated by a filter with a string and padding. The filter spatially scans the 
inputs based on a stride that controls the amount of movement over the inputs to create a feature map 
that summarizes the presence of detected features. However, since the generated feature map through 
the filter causes the issue of information loss, padding is applied to around the feature map to avoid such 
a problem. Note that zero-padding is widely used. Moreover, either ReLU or tanh activation function 
could be adopted to calculate the feature map, iii) two different pooling layers such as average pooling 
and max pooling reduce the size of the feature representations to control overfitting by down-sampling 
the inputs. Both pooling layers are computed by the following equations (6) and (7): 

• Average pooling 

 

(6) 

• Max pooling 
fmax (x) = max (xi) (7) 

where x denotes the inputs with activation values and N indicates a local pooling region. Note that 
max pooling is more commonly used than average pooling, iv) the FCN layer with an activation function 
performs high-level reasoning, and v) the output layer is for classification [4], [18-20].  There are two 
things to keep in mind. The first thing is related to activation functions. While typical activation functions 
used in the convolutional layer are sigmoid, tanh, and ReLU, the ReLU activation guarantees faster 
computation compared to the other two activation functions as mentioned earlier [18], [21]. The second 
thing is that the CNN model could be categorized differently like shallow, moderate, and deep depending 
on the number of the convolutional layer, pooling layer, and FCN layer as mentioned in Section I. 

In this research, we adopted the shallow CNN model for the purpose of consistency, and as shown 
in Fig. 3 below, its architecture is as follows: i) one convolution layer with 64 filters, and the filter size is 
3*1, ii) one max pooling layer with a stride. A stride is set to 1, iii) one FCN layer with 64 neurons, and iv) 
one softmax layer. Besides, both DNN and CNN models in this research perform training with the binary 
cross-entropy loss function, Adam optimizer, batch normalization, ReLU activation, and dropout. Note 
that we set 0.5 to the dropout rate. 
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Fig. 3. Architecture of the CNN model 

RNN Model 

RNN is an extension of feed forward neural networks, which is cyclic connections-based for modelling 
sequences in time series [22]. There are three main layers such as input, hidden, and output layers like 
the DNN model [23]. The hidden layer refers to a recurrent hidden state, and it is denoted as [24]: 

 (8) 
where xt is the inputs at time t, ht is the hidden state, g is the activation function, and W, U, and b 

are the sized parameters like input-hidden matrix, hidden-hidden matrix, and bias [24]. The RNN model 
has definite pros and cons. For example, a variety of different types of data could be used in the RNN 
model, but despite the RNN model uses a memory cell to store data, they cannot be stored for a long time 
due to a vanishing gradient issue [23]. For this reason, the idea of using the GRU and the LSTM as the 
memory cell to overcome such an issue has been proposed. 

The GRU RNN model consists of an update gate zt that determines how much the unit updates its 
activation and a reset gate rt that is used to forget the previously computed state [25]. Both gates are 
computed by the following equations (9) and (10) below [25-26]. 

 (9) 

 (10) 
where g is the activation function, xt is the inputs at time, and Wz, Uz, Wr, and Ur are weight matrices. 
The LSTM RNN is a special type of RNN architecture. It is composed of a chain structure, but four 

interaction layers as the repeating module or cell are used with a unique communication method [27]. Its 
architecture is illustrated in Fig. 4 below, and the following Table 2 describes the meaning of each 
notation in Fig. 4. 

 

 

Fig. 4. Architecture of the LSTM RNN model [27] 

Table 2. Meaning of Each Notation [27] 

Category Notation Description 

Inputs 
xt Current inputs 
ht-1 Output of the previous LSTM unit 
ct-1 Memory cell  state from the previous LSTM unit 

Outputs ht Current output 
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ct New updated memory cell 

Non-linearity 
σ Sigmoid activation function 
tanh tanh activation function 
b bias 

Vector operations  
Scaling of information 

 
Adding information 

 
There are three main steps in LSTM architecture [27]. The first step is to identify and exclude data. 

Specifically, the sigmoid function determines which data need to be identified from the outputs of the 
previous LSTM unit at time t-1 and the current inputs at time t, as well as, which one from the old outputs 
needs to be excluded. This step is performed by the forget gate, and it is computed by the following 
equation (11): 

 (11) 
where Wf and bf are the weight matrices and bias, respectively. The second step with respect to the 

cell state is to determine which information needs to be updated or ignored, and its importance level 
through the sigmoid and tanh. The cell state is updated by the following equation (14) resulted from 
equations (12) and (13): 

 (12) 

 (13) 

 (14) 
where Ct is a memory cell, and ʘ is element-wise multiplication. 
The last step is to compute the output cell state through the following equations (15) and (16): 

 (15) 

 (16) 
After analyzing RNN architectures, we realized that the most challenging part of this research is to 

decide  RNN model architecture because various architectures could be built depending upon a memory 
cell and an activation function. For instance, simple RNN with the sigmoid function, simple RNN with the 
softmax function, LSTM with the sigmoid function, etc. are candidate architectures for the RNN model. 
However, note that the fundamental idea to build a simple architecture is the same as the DNN and CNN 
models, which means one input layer, one hidden layer, and one output layer. Thus, we subjectively 
decided to employ the simple RNN model with the sigmoid function at our discretion, and its architecture 
is as follows: i) one input layer with seventy-eight features including two labels, ii) one hidden layer 
based on the simple RNN with sixty-four hidden units, and iii) one fully-connected output layer with the 
softmax function. Furthermore, the RNN model performs training with the binary cross-entropy loss 
function, Adam optimizer, and dropout like the other two deep learning models. Note that we set 0.5 to 
the dropout rate, and the architecture of the RNN is depicted in Fig. 5 below. 

 

 

Fig. 5. Architecture of the RNN model 

RESULT AND DISCUSSION 

Before performing experiments, we built each deep learning model with a computer that has the 
following hardware specifications: Intel i5-7300U 2.6GHz with 8GB RAM. Moreover, each deep learning 
model was implemented by Python Keras package and was evaluated against the CICIDS 2017 datasets. 
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As already mentioned earlier, we did not preprocess the dataset like classifying multiple labels into 
binary labels because the CICIDS 2017 dataset already has two labels only. However, two features out of a 
total of seventy-nine features, i.e., Flow Bytes/s and Flow Packets/s features, were dropped due to the 
technical difficulty of applying one-hot encoding. After dropping those two features, the next thing was to 
split the dataset into training and testing datasets. Specifically, we divided 80% and 20% of the entire 
dataset into the training and testing datasets. After this step, one-hot encoding was applied so that a total 
of seventy-eight features were fed into each deep learning model as input data. All the models performed 
training with five epochs, and the F1 score was employed to measure detection accuracy for binary 
classification. 

Figs. 6 and 7 below depicts the first experimental results in terms of training loss, validation loss, 
training accuracy, and validation accuracy of the DNN model. 

 

 

Fig. 6. Training and validation loss of the DNN model 

 

Fig. 7. Training and validation accuracy of the DNN model 

As shown in Figs 6 and 7, we observed that validation loss is higher than training loss, and 
validation accuracy is lower than training accuracy. The experimental results above seem that it may 
doubt overfitting, but since both validation results are getting close to training loss and accuracy, we 
believe that the DNN is not likely overfitting the training data. Based on this, we trained both CNN and 
RNN models as well, and Figs 8 through 11 depict training loss, validation loss, training accuracy, and 
validation accuracy of both models. 

After training three deep learning models, all models show the same trend that validation results 
are getting close to training loss and accuracy. Once training our deep learning models is done, we 
measured the F1 score through the confusion matrix, and the following Table 3 summarizes the detection 
accuracy of each deep learning model against the CICIDS 2017 dataset. 
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Fig. 8. Training and validation loss of the CNN model 

 

Fig. 9. Training and validation accuracy of the CNN model 

 

Fig. 10. Training and validation loss of the RNN model 
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Fig. 11. Training and validation accuracy of the DNN model 

Table 3. A Summary of Experimental Results 

 Precision Recall F1 Score 

DNN 
Benign 0.9986 0.9762 

98.14% 
DDoS 0.9336 0.9960 

CNN 
Benign 0.9987 0.9526 

96.43% 
DDoS 0.8761 0.9932 

RNN 
Benign 0.9988 0.9109 

93.48% 
DDoS 0.7899 0.9967 

 
According to Table 3 above, all three deep learning models showed satisfactory results, but 

interestingly, the DNN model outperformed the other two models. Although no assumptions were made 
before starting this research, we honestly expected that the RNN model would show the highest accuracy, 
given that the RNN model was up-to-date compared to the DNN and CNN models. 

CONCLUSION 

Network anomaly detection is one of the most significant issues in network security. In this paper, we 
presented an examination for network anomaly detection with the CICIDS2017 dataset using the DNN, 
CNN, and RNN models. Our experimental results show that three deep learning models have high 
detection accuracy, but the DNN model outperformed the other two deep learning models, which 
achieved an overall accuracy of 98.14%. We think deep learning models eventually seem to be a robust 
potential tool for network anomaly detection in the cybersecurity field, but some future research works 
need to be conducted. 

In a simple deep learning model architecture, the DNN model showed the highest accuracy, but in 
fact, the architecture of deep learning may be deeply designed. It is necessary to verify which models 
show the highest accuracy in a deeply designed deep learning architecture. It is also questionable how 
well the deep learning model actually works in the field of cybersecurity because only a straightforward 
binary label dataset was used. Therefore, it is necessary to verify that the deep learning models are good 
at detecting network anomalies using multi-label datasets. The last future work we are thinking of is to 
build unsupervised deep learning models. Since our deep learning model is supervised-learning based, 
showing high accuracy may be a natural result. Thus, it is our final future research work to develop an 
unsupervised learning-based deep learning model that can expect high accuracy and be applied directly 
to real life. 
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