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Abstract-Attaining high-performance and power efficiency has become a critical issue in modern embedded systems. 
To address this issue, computer architects have integrated the single-ISA heterogeneous cores on the same chip 
known as asymmetric multicore processors (AMPs), which also satisfies the diverse computational requirements 
efficiently in real-time. Despite its benefits, resource administration in terms of scheduling and mapping the tasks 
onto appropriate cores become a challenging task. In this paper, we targeted such AMP systems for emulation and 
develop an intelligent scheduling heuristic for MiBench workloads execution. The proposed semi-dynamic energy-
efficient scheduling algorithm (SD-EESA) comprises workload modeling, prioritization, and mapping stages. 
Workloads are modeled as directed acyclic graphs (DAG) with combination of nodes and edges. In the second phase, 
these nodes are prioritized in the non-increasing order of its cost value and allocated to active processors based on 
the online profiling data in terms of core utilization, which is a novel method compare to traditional models. The 
simulated environment shows an improvement of 30.6% and 14.6% in overall execution time and 34.9% and 19.2% 
in energy reduction for MiBench workloads than traditional heterogeneous earliest finish time (HEFT), Robust-HEFT. 
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I. INTRODUCTION 

In recent days, Multi-core architectures are extended from homogeneous to heterogeneous structures. 
Heterogeneous multi-core is the combination of computational cores, graphical cores and accelerators are 
integrated into the same system on a chip. Many high-end applications make use of the multi-core 
architectures to attain parallel processing and high performance [1]. Parallel processing in such multi-
core architectures requires efficient scheduling algorithms to control and manage the execution of 
multiple tasks in the system-on-chip. The problem identified in such parallel processing is energy 
consumption [2]. Power dissipation of such multi-core circuits includes the sum of leakage and switching 
power which consumed more during the processing of large computational tasks. This high power 
dissipation leads to system failure and poor performance in real-time [3]. Intel manufactures survey 
shows the power dissipation [4] of each core leads up to 35-40W and consumes[5], 1$ per watt in the 
multi-core system-on-chip [6].This technique increases the total electricity cost grow to 35% in 2020 for 
high-end applications [7].This paper addresses the design and deployment of the effective scheduling 
method known as semi-dynamic energy efficient scheduling algorithm (SD-EESA) for periodic tasks in 
asymmetric multicore to the tradeoff of time and energy constraints concurrently.DAG Modeling phase - It 
modeled the periodic tasks into the directed acyclic graph structure with its attributes. A vertex of the 
graph represents the task and links between two vertices represents the communication cost. Periodic 
workloads are transformed into DAG model using TGFF tool. Task prioritization phase –Periodic task 
graphs are prioritized in non-increasing order based on the cost value of each task, which is calculated 
using equation 2.Core mapping phase -This phase dynamically selects the processors for each task 
execution based on the online profiling data of the active cores at run-time. In this article, we adopted the 
DVFS technique to manage the operating frequency and voltage based on the load at each processor. The 
remaining sections are, sections two explains about the related survey and section 3-System model and 
application model and in part 4 explains about the SD-EESA framework and chapter 5, 6 is simulation 
environment with results and discussion and Conclusion. 
 

II. RELATED WORK 

This section briefly describes related research in the same field of task scheduling, which modeled tasks 
into multiple Dag formats with various parameters. Task scheduling in heterogeneous systems described 
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in detail. HEFT and Critical Path on processor [12], Robust- HEFT [14], Duplication based HEFT [15], all 
are traditional task scheduling methods for heterogeneous systems.  In HEFT [12], authors developed a 
rank based schedule which includes two stages (i) Task prioritize phase which arranges tasks as per its 
rank value into a ready queue and (ii) Map the tasks in the available processors as per round robin format. 
CPOP scheduler calculates both upward rank and downward rank value to prioritize the tasks and 
followed the HEFT for execution. Robust HEFT [14] is a planning algorithm which splits the following 
functions into independent task sets and executes independently to improve utilization ratio and Make 
span. Duplication based HEFT utilizes the slack time for duplication tasks and improves the concept of 
mapping with feedback data [15]. These scheduling algorithms considered total system execution time 
minimization of multi-core systems.AI-based scheduling techniques such as ant colony optimization 
algorithm; genetic algorithm and particle swarm intelligent were developed to optimize the system 
execution time by reducing the search space of optimal solution for multi-core scheduling [8].  
 

III. DESIGN PRINCIPLES 

A.   Periodic DAG Model 
 
An implicit periodic task modeled as a directed acyclic graph (DAG). A DAG is classically defined as G = (V, 
E) combination of vertices and edges. For our scheduling problem, we changed the regular DAG graph into 
G'= (V, E, Ci, pi, di) where V represents the task nodes and E represents the edge cost between Vi and Vj 
when both tasks are allocated in a different processor [9]. 𝐶𝑖 ′is the computation cost matrix of V*M in 
which 𝐶𝑖𝑗 is the estimated execution time of task Vi on Mj.pi is the inter-arrival time of each task (Period), 

and di is the relative constrained deadline (di < pi) and if di = pi then it is called implicit deadline. Such (Vi) 
is an immediate successor of task Vi, and pred (Vi) is the direct predecessor of task Vi. A node without a 
successor is known an exit task, and a node without predecessors is known as an entry task. For example, 
a MiBench workload named as recognition code is modeled as a ten-node graph with its Cij and Dij showed 
in Figure.1 
  
B. System Model 
 
In this article  we considered performance asymmetric multicore structure with three cores represented 
as M ε {M1, M2, M3}. Each core is having the same instruction set architecture but differ in its pipelined, 
operating frequency, and voltage. We assumed the cache, I/O and other multicore resources are included 
in the core. Operating frequency and voltage levels such as (fmin, fmax) and (Vmin, Vmax) are denoted by the 
user. In this paper, we assumed the voltage value is varied from 0.2 to 0.85 and frequency values are 
varied in 1.0GHz to 1.8GHz respectively [10]. 
 

IV. PROPOSED METHODOLOGY 

The proposed framework SD-EESA comprises the workload modeling phase, which initially structured the 
periodic tasks in terms of computation costs as nodes and communication cost as edges. Likewise, the 
MiBench workloads are modeled with different degrees of parallelism. Each periodic task is generated 
with the respective constrained deadlines and its job instance units (period). In the first phase, we 
calculate the worst-case execution cost as per equation (1) based on the core frequency. To utilize the 
heterogeneity nature of cores, we initially calculated the core utilization factor at every’t’ sampling period 
before allocating each task at runtime [11]. The tasks are allocated to the appropriate processors and 
executed before its deadline. For example, a k-task with utilization is 30% ready for execution, and the 
three different core utilization factors are 40%, 20%, and 10% utilized at the arrival time of k-task. The 
proposed algorithm will allocate that task into least utilized core (i.e., core with 10%) to achieve the 
deadline and also minimize the scheduling overhead (waiting time).  
 
A. SD-EESA Framework 

 
The estimated average execution time of each task‘Vi’ on the available processor ‘Mj’ is denoted as 𝐶𝑖 , ′ and 
cost values are given in Table 1. Periodic tasks are varied from 1 to ‘n’ and cores are varied from 1 to m 
where i denote the task and j denotes the core in an execution cost matrix [13]. The data transfer time 
between two cores denoted in Eij

’ of size M*M. Communication cost matrix between two tasks is 
represented as an edge (i, j). This edge cost is obtained during the transmission of data from memory to 
cores.  
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𝐶𝑖 ′ =  𝐶𝑖𝑗 /𝑀𝑀
𝑗=1         (1) 

𝐸𝑖𝑗′ = 𝑁 +
𝑑𝑎𝑡𝑎  𝑖 ,𝑗  

𝐸(𝑚 ,𝑛)
        (2) 

𝑟𝑐 𝑉𝑖  = 𝐶𝑖 ′ +  𝑚𝑎𝑥𝑉𝑗∈𝑠𝑢𝑐𝑐  𝑉𝑖 (𝐸𝑖𝑗
′ +  𝑟𝑐 𝑉𝑗  )   (3) 

𝑟𝑐 𝑉𝑒𝑥𝑖𝑡  =  𝐶𝑒𝑥𝑖𝑡
′        (4) 

 
Where𝐸𝑖𝑗  ′ the average communication cost is 0 if Mw= Mk and 𝐶𝑖 ′ is the standardexecution cost of task𝑉𝑖 . 

Equation 3 illustrates the upward rank value of each task if traversed from Vexit to Ventry tasks [12]. 
 

B. Periodic Task Prioritize Phase  

Each task is prioritized based on the estimated optimized rank cost value [20]. The optimized rank value is 
calculated based on the summation of the tasks on the allocated core is divided by the total number of 
processors. 

𝑂𝑅𝑇 𝑉𝑖 =
 𝑟𝑐 𝑉𝑖 ,𝑀𝑘 
𝑀
𝐾=1

𝑀
       (5) 

 
Periodic tasks are prioritized in decreasing order in task prioritization stage. Table 1illustrates the cost 
value of sample periodic task graph. Task V4 is prioritized before task V2, and task V10 is the least cost 
value, which is the lowest priority task 
 

 
 

Figure 1. Periodic DAG 
C. Core Mapping Phase 
 
We assumed asymmetric multicore architecture as targeted for the execution of periodic tasks. Ready 
tasks are mapped into active cores based on the online profiling data such as core utilization factor which 
is updated every 4ms at run-time. Core utilization factor is varied in two conditions (i) task Vi utilized the 
core Mj for Ti time units and (ii) total utilization of core j at Ti time units. We checked both the conditions 
at run-time to identify the appropriate processor for each task Vi. Core utilization data’s are defined in two 

matrices. First matrix 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖 , illustrates the task utilization value on each core at ti separately. For 

example, a task V1 utilized core 1 for 3ms and same task consumed 8ms by core 2 at time instance ti. This 
matrix is calculated as per equation 5. The second matrix shows the core utilization at time instance ti 

which is updated for every 4ms. We assumed the upper bound of core util. is less than 100. The upper 
bound of the execution cost is 50ms and lower bound of execution cost is 1ms. 
 
 

Table 1. Task Prioritization Phase 
 

Tasks M1 M2 M3 
Rank 
cost 
(RC) 

Optimized 
rank 

cost(ORC) 

V1 12 6 12 93 31 

V2 7 12 3 58 19.3 
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V3 4 10 19 45 15 

V4 12 19 15 62 20.6 

V5 11 9 4 49 16.3 

V6 17 4 9 65 21.6 

V7 3 10 10 27 9 

V8 11 13 12 28 9.3 

V9 12 8 15 30 10 

V10 6 5 2 4 1.3 

 

   𝐴𝑇𝑈𝑀𝑘

𝑡𝑖  =  
𝐶𝑖
′

𝑝𝑖
/𝑓𝑘

𝑛
𝑖=1         (6) 

  𝑇𝑈𝑀𝑘

𝑡𝑖 =   𝑢𝑖𝑀𝑘
𝑡𝑖𝑀

𝑘=1        (7) 

𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙.  𝑀𝑘𝑡𝑖 =  𝑇𝑈𝑀𝑘
𝑡𝑖 +  𝐴𝑇𝑈𝑀𝑘

𝑡𝑖     (8) 

𝐶𝑆  𝑉𝑖 ,𝑀𝑘 =   𝐶𝑖
′ 𝑉𝑖  ≤  𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙.  𝑀𝑘𝑡𝑖               (9) 

 
Based on this core utilization factor value, we mapped the ready tasks at run-time. It guaranteed the task 
execution and reduced the scheduling overhead. 
 
D. Energy Model 

 
Power dissipation in multi-core architecture is the sum of static power and dynamic power [15]. More 
energy consumed during the computational process and total power consumption is given in equation 
(10). 

𝑃𝑑𝑦𝑛 = 𝑐𝑒𝑓𝑓𝑘 ∗ 𝑉2
𝑘 ∗ 𝑓𝑘       (10) 

𝐸𝐶𝑖𝑗 =   𝑃𝑑𝑦𝑛𝑖∈𝑁,𝑗  ∈ 𝑀 ∗   𝐶𝑖𝑗 ′     (11) 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝐸𝑇𝑠𝑦𝑠 = 𝑀𝑎𝑥   𝐴𝐹𝑇  𝑁𝑒𝑥𝑖𝑡      (12) 

𝐶𝑆  𝑉𝑖 ,𝑀𝑘 =   𝐶𝑖
′ 𝑉𝑖  ≤  𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙.  𝑀𝑘𝑡𝑖    (13) 

 
Algorithm 1: SD-Energy Efficient Scheduling Algorithm (SD-EESA) 

 
1. Core initialized with its voltage and frequency. 

2. Calculate 𝐶𝑖 ′ =
𝐶𝑖𝑗

𝑓𝑗
to find estimated execution time of task i on core j. 

3. Calculate 𝐸𝑖𝑗 = 𝑁 +
𝑑𝑎𝑡𝑎  𝑖 ,𝑗  

𝐸(𝑚 ,𝑛)
  data transmission cost 

4. for i = 1 to m do: 

5.  for j= 1 to m do: 

6. 𝑟𝑐 𝑉𝑖  = 𝐶𝑖
′ +  𝑚𝑎𝑥𝑉𝑗 ∈𝑠𝑢𝑐𝑐  𝑉𝑖  𝐸𝑖𝑗

′ +  𝑟𝑐 𝑉𝑗       ∀ 𝑖 ∈ 𝑁  

7.  𝑟𝑎𝑛𝑘 𝑐𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑁𝑖 =    
 𝑂𝑅𝑇 𝑉𝑖 ,𝑀𝑘  
𝑀
𝑘=1

𝑀
 

8. 𝑒𝑛𝑑 

9. end 

10. Tasks are sorted in decreasing order and inserted into ready queue 

11. Calculate the utilization of each task 𝑢𝑖 =
𝐶𝑖 ′

𝑝𝑖
.    

12. Calculate the actual core utilization at run-time 

  𝐴𝑇𝑈𝑀𝑘

𝑡𝑖  =  
𝐶𝑖
′

𝑝𝑖
/𝑓𝑘

𝑛
𝑖=1  (14) 
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𝑇𝑈𝑀𝑘

𝑡𝑖 =   𝑢𝑖𝑀𝑘
𝑡𝑖𝑀

𝑘=1   (15) 

13. for  j = 1: k do: 

14. Update the  𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙.  𝑀𝑘𝑡𝑖 every ti time units.  

15. 𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙.  𝑀𝑘𝑡𝑖 =  𝑇𝑈𝑀𝑘
𝑡𝑖 + 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖  

16. end 

17. If Ci’ (Vi) ≤𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑀𝑘𝑡𝑖 ∶Task assigned to the current core for execution. 

18. Else the task is sent back to the re-mapping queue. end 

19. Repeat for and if loop until all tasks are allocated at least in one core. 

20. Tasks are re-mapped to the cores in a dynamic model based on its utilization requirement. 

21. for j=1: M 

22. Calculate 𝐸𝑇𝑠𝑦𝑠  = 𝑀𝑎𝑥   𝐴𝐹𝑇  𝑁𝑒𝑥𝑖𝑡    

23. Energy consumption is obtained using equation 12. 

24. end 

 

V. EXPERIMENTAL SET-UP 

Raspberry pi-3 b+ SoC is used for experimental verification which includes quad core multicore  as 
ARM cortex-A53 (Armv8) with 1.4 GHz maximum frequency, 1 GB internal memory, 64GB external SD 
card,  5V/2.5 A DC Power, 2.4 GHz IEEE 802.1 Ethernet support, USB ports, camera, DSI display etc. 
The operating frequency variation assumed in between {0.8-1.4 GHz} and voltage {0.85-3.3V} in steps 
of 2.IoMT workloads such as “histogram, sensor tasks, aes, cryptography tasks” are used for evaluation. 
We also used sensor programs which developed on arudino board such as temperature, pressure, 
humidity, camera sensing code, etc. , on the real-time with regular period and deadline metrics. Each 
task is assumed with individual deadline and period (inter-arrival time) in the range of {min, max} 
values. TGFF [12] is used to generate synthetic task graphs with limited nodes. Periodic task features 
such as several instructions in a program, arrival time, computing time, data rate, period, and deadline 
are pre-defined for synthetic data sets, which details are given in table 2. 
 

VI. SIMULATION ENVIRONMENT 

Simso [24] is a Python based multiprocessing scheduling simulator which is utilized for developing the 
‘SESA’ in Ubuntu-18.04 OS with Linux kernel and the memory is 64GB. Psutils and perf tools are used 
for performance observations in terms of total execution time, core utilization, energy consumption 
with average power consumed. 

 
Table 2. Parameters of Task Graph using TGFF 

 

Parameters Range 

No. of. task nodes {5-20} in each graph 

No. of. edges {2-10} are varied randomly 

Deadline and period 1. {0.1s-15s} and {0.5s-25s} 

2. CCR, out degree, {0.1-3} 
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Figure 2. Performance of Proposed Mapping Techniques for MiBench Workloads 
 

VII.     PERFORMANCE OF PROPOSED MAPPING TECHNIQUES FOR MIBENCH WORKLOADS 

SD-EESA framework is developed for periodic (IoT sensor) applications on asymmetric multicore. 
Simulated results are shown in figure 2. Synthetic task graphs and benchmark workloads are tested using 
the proposed algorithm. SD-EESA scheduled the periodic tasks based on the online profiling data of active 
cores, which updated every‘t= 4ms’ at runtime. The ready tasks are mapped to the appropriate processors 
based on the runtime core utilization factor. SD-EESA scheduler.SD-EESA improved the make span 
reduction up to 73.7% in average than HEFT and 60.1% on average than R-HEFT method and improved 
the make span for MiBench workloads up to 30.6% in average than HEFT and 14.6% on average than R-
HEFT method. For MiBench workloads, energy consumption (reduction) is improved up to 34.9% than 
HEFT method and 19.2% than R-HEFT. Energy consumption (reduction) is improved in an average of 
61.8% than HEFT and 36.3% than R-HEFT method. The time complexity of the SD-EESA framework is O 
(V2.M), where V is the total number of tasks, and M is the number of active cores. 

 

VIII.    CONCLUSION 

This article addresses the energy efficient scheduling techniques to achieve an optimal solution in 
bothsystem execution time and energy consumption of asymmetric multicore architecture. Semi-dynamic 
energy efficient scheduling algorithms are designed and developed for periodic applications. The 
proposed algorithm includes three different stages, such as task modeling, task prioritization, and core 
mapping. The proposed scheduling framework is achieved an optimal solution in both time and energy 
with less time complexity O (V2. M). this scheduling framework is evaluated with traditional methods 
such as HEFT and robust HEFT. Simulated results show an improvement of 30.6% and14.6% in overall 
execution time and 34.9% and19.2% in energy reduction for MiBench workloads. 
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