
xIlkogretim Online - Elementary Education Online,2021; Vol 20 (Issue 1): pp.2179-2185
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2021.01.240

2179| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

Energy Efficient Task Scheduling Algorithms for Performance

Asymmetric Multicore Architectures

Gomatheeshwari B, Department of Electronics and Communications Engineering, College of Engineering and

Technology SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu,

India, gomatheeshwari_balasekaran@srmuniv.edu.in

Selvakumar J, Department of Electronics and Communications Engineering, College of Engineering and Technology

SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, India,
selvakumar.j@ktr.srmuniv.ac.in

Abstract-Attaining high-performance and power efficiency has become a critical issue in modern embedded systems.
To address this issue, computer architects have integrated the single-ISA heterogeneous cores on the same chip
known as asymmetric multicore processors (AMPs), which also satisfies the diverse computational requirements
efficiently in real-time. Despite its benefits, resource administration in terms of scheduling and mapping the tasks
onto appropriate cores become a challenging task. In this paper, we targeted such AMP systems for emulation and
develop an intelligent scheduling heuristic for MiBench workloads execution. The proposed semi-dynamic energy-
efficient scheduling algorithm (SD-EESA) comprises workload modeling, prioritization, and mapping stages.
Workloads are modeled as directed acyclic graphs (DAG) with combination of nodes and edges. In the second phase,
these nodes are prioritized in the non-increasing order of its cost value and allocated to active processors based on
the online profiling data in terms of core utilization, which is a novel method compare to traditional models. The
simulated environment shows an improvement of 30.6% and 14.6% in overall execution time and 34.9% and 19.2%
in energy reduction for MiBench workloads than traditional heterogeneous earliest finish time (HEFT), Robust-HEFT.

Keywords: DAG, Energy-Time tradeoff, Periodic tasks, Performance Asymmetric multicore, and SD-EESA technique

I. INTRODUCTION

In recent days, Multi-core architectures are extended from homogeneous to heterogeneous structures.
Heterogeneous multi-core is the combination of computational cores, graphical cores and accelerators are
integrated into the same system on a chip. Many high-end applications make use of the multi-core
architectures to attain parallel processing and high performance [1]. Parallel processing in such multi-
core architectures requires efficient scheduling algorithms to control and manage the execution of
multiple tasks in the system-on-chip. The problem identified in such parallel processing is energy
consumption [2]. Power dissipation of such multi-core circuits includes the sum of leakage and switching
power which consumed more during the processing of large computational tasks. This high power
dissipation leads to system failure and poor performance in real-time [3]. Intel manufactures survey
shows the power dissipation [4] of each core leads up to 35-40W and consumes[5], 1$ per watt in the
multi-core system-on-chip [6].This technique increases the total electricity cost grow to 35% in 2020 for
high-end applications [7].This paper addresses the design and deployment of the effective scheduling
method known as semi-dynamic energy efficient scheduling algorithm (SD-EESA) for periodic tasks in
asymmetric multicore to the tradeoff of time and energy constraints concurrently.DAG Modeling phase - It
modeled the periodic tasks into the directed acyclic graph structure with its attributes. A vertex of the
graph represents the task and links between two vertices represents the communication cost. Periodic
workloads are transformed into DAG model using TGFF tool. Task prioritization phase –Periodic task
graphs are prioritized in non-increasing order based on the cost value of each task, which is calculated
using equation 2.Core mapping phase -This phase dynamically selects the processors for each task
execution based on the online profiling data of the active cores at run-time. In this article, we adopted the
DVFS technique to manage the operating frequency and voltage based on the load at each processor. The
remaining sections are, sections two explains about the related survey and section 3-System model and
application model and in part 4 explains about the SD-EESA framework and chapter 5, 6 is simulation
environment with results and discussion and Conclusion.

II. RELATED WORK

This section briefly describes related research in the same field of task scheduling, which modeled tasks
into multiple Dag formats with various parameters. Task scheduling in heterogeneous systems described

2180| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

in detail. HEFT and Critical Path on processor [12], Robust- HEFT [14], Duplication based HEFT [15], all
are traditional task scheduling methods for heterogeneous systems. In HEFT [12], authors developed a
rank based schedule which includes two stages (i) Task prioritize phase which arranges tasks as per its
rank value into a ready queue and (ii) Map the tasks in the available processors as per round robin format.
CPOP scheduler calculates both upward rank and downward rank value to prioritize the tasks and
followed the HEFT for execution. Robust HEFT [14] is a planning algorithm which splits the following
functions into independent task sets and executes independently to improve utilization ratio and Make
span. Duplication based HEFT utilizes the slack time for duplication tasks and improves the concept of
mapping with feedback data [15]. These scheduling algorithms considered total system execution time
minimization of multi-core systems.AI-based scheduling techniques such as ant colony optimization
algorithm; genetic algorithm and particle swarm intelligent were developed to optimize the system
execution time by reducing the search space of optimal solution for multi-core scheduling [8].

III. DESIGN PRINCIPLES

A. Periodic DAG Model

An implicit periodic task modeled as a directed acyclic graph (DAG). A DAG is classically defined as G = (V,
E) combination of vertices and edges. For our scheduling problem, we changed the regular DAG graph into
G'= (V, E, Ci, pi, di) where V represents the task nodes and E represents the edge cost between Vi and Vj
when both tasks are allocated in a different processor [9]. 𝐶𝑖 ′is the computation cost matrix of V*M in
which 𝐶𝑖𝑗 is the estimated execution time of task Vi on Mj.pi is the inter-arrival time of each task (Period),

and di is the relative constrained deadline (di < pi) and if di = pi then it is called implicit deadline. Such (Vi)
is an immediate successor of task Vi, and pred (Vi) is the direct predecessor of task Vi. A node without a
successor is known an exit task, and a node without predecessors is known as an entry task. For example,
a MiBench workload named as recognition code is modeled as a ten-node graph with its Cij and Dij showed
in Figure.1

B. System Model

In this article we considered performance asymmetric multicore structure with three cores represented
as M ε {M1, M2, M3}. Each core is having the same instruction set architecture but differ in its pipelined,
operating frequency, and voltage. We assumed the cache, I/O and other multicore resources are included
in the core. Operating frequency and voltage levels such as (fmin, fmax) and (Vmin, Vmax) are denoted by the
user. In this paper, we assumed the voltage value is varied from 0.2 to 0.85 and frequency values are
varied in 1.0GHz to 1.8GHz respectively [10].

IV. PROPOSED METHODOLOGY

The proposed framework SD-EESA comprises the workload modeling phase, which initially structured the
periodic tasks in terms of computation costs as nodes and communication cost as edges. Likewise, the
MiBench workloads are modeled with different degrees of parallelism. Each periodic task is generated
with the respective constrained deadlines and its job instance units (period). In the first phase, we
calculate the worst-case execution cost as per equation (1) based on the core frequency. To utilize the
heterogeneity nature of cores, we initially calculated the core utilization factor at every’t’ sampling period
before allocating each task at runtime [11]. The tasks are allocated to the appropriate processors and
executed before its deadline. For example, a k-task with utilization is 30% ready for execution, and the
three different core utilization factors are 40%, 20%, and 10% utilized at the arrival time of k-task. The
proposed algorithm will allocate that task into least utilized core (i.e., core with 10%) to achieve the
deadline and also minimize the scheduling overhead (waiting time).

A. SD-EESA Framework

The estimated average execution time of each task‘Vi’ on the available processor ‘Mj’ is denoted as 𝐶𝑖 , ′ and
cost values are given in Table 1. Periodic tasks are varied from 1 to ‘n’ and cores are varied from 1 to m
where i denote the task and j denotes the core in an execution cost matrix [13]. The data transfer time
between two cores denoted in Eij

’ of size M*M. Communication cost matrix between two tasks is
represented as an edge (i, j). This edge cost is obtained during the transmission of data from memory to
cores.

2181| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

𝐶𝑖 ′ = 𝐶𝑖𝑗 /𝑀𝑀
𝑗=1 (1)

𝐸𝑖𝑗′ = 𝑁 +
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝐸(𝑚 ,𝑛)
 (2)

𝑟𝑐 𝑉𝑖 = 𝐶𝑖 ′ + 𝑚𝑎𝑥𝑉𝑗∈𝑠𝑢𝑐𝑐 𝑉𝑖 (𝐸𝑖𝑗
′ + 𝑟𝑐 𝑉𝑗) (3)

𝑟𝑐 𝑉𝑒𝑥𝑖𝑡 = 𝐶𝑒𝑥𝑖𝑡
′ (4)

Where𝐸𝑖𝑗 ′ the average communication cost is 0 if Mw= Mk and 𝐶𝑖 ′ is the standardexecution cost of task𝑉𝑖 .

Equation 3 illustrates the upward rank value of each task if traversed from Vexit to Ventry tasks [12].

B. Periodic Task Prioritize Phase

Each task is prioritized based on the estimated optimized rank cost value [20]. The optimized rank value is
calculated based on the summation of the tasks on the allocated core is divided by the total number of
processors.

𝑂𝑅𝑇 𝑉𝑖 =
 𝑟𝑐 𝑉𝑖 ,𝑀𝑘
𝑀
𝐾=1

𝑀
 (5)

Periodic tasks are prioritized in decreasing order in task prioritization stage. Table 1illustrates the cost
value of sample periodic task graph. Task V4 is prioritized before task V2, and task V10 is the least cost
value, which is the lowest priority task

Figure 1. Periodic DAG
C. Core Mapping Phase

We assumed asymmetric multicore architecture as targeted for the execution of periodic tasks. Ready
tasks are mapped into active cores based on the online profiling data such as core utilization factor which
is updated every 4ms at run-time. Core utilization factor is varied in two conditions (i) task Vi utilized the
core Mj for Ti time units and (ii) total utilization of core j at Ti time units. We checked both the conditions
at run-time to identify the appropriate processor for each task Vi. Core utilization data’s are defined in two

matrices. First matrix 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖 , illustrates the task utilization value on each core at ti separately. For

example, a task V1 utilized core 1 for 3ms and same task consumed 8ms by core 2 at time instance ti. This
matrix is calculated as per equation 5. The second matrix shows the core utilization at time instance ti

which is updated for every 4ms. We assumed the upper bound of core util. is less than 100. The upper
bound of the execution cost is 50ms and lower bound of execution cost is 1ms.

Table 1. Task Prioritization Phase

Tasks M1 M2 M3
Rank
cost
(RC)

Optimized
rank

cost(ORC)

V1 12 6 12 93 31

V2 7 12 3 58 19.3

2182| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

V3 4 10 19 45 15

V4 12 19 15 62 20.6

V5 11 9 4 49 16.3

V6 17 4 9 65 21.6

V7 3 10 10 27 9

V8 11 13 12 28 9.3

V9 12 8 15 30 10

V10 6 5 2 4 1.3

 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖 =
𝐶𝑖
′

𝑝𝑖
/𝑓𝑘

𝑛
𝑖=1 (6)

 𝑇𝑈𝑀𝑘

𝑡𝑖 = 𝑢𝑖𝑀𝑘
𝑡𝑖𝑀

𝑘=1 (7)

𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙. 𝑀𝑘𝑡𝑖 = 𝑇𝑈𝑀𝑘
𝑡𝑖 + 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖 (8)

𝐶𝑆 𝑉𝑖 ,𝑀𝑘 = 𝐶𝑖
′ 𝑉𝑖 ≤ 𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙. 𝑀𝑘𝑡𝑖 (9)

Based on this core utilization factor value, we mapped the ready tasks at run-time. It guaranteed the task
execution and reduced the scheduling overhead.

D. Energy Model

Power dissipation in multi-core architecture is the sum of static power and dynamic power [15]. More
energy consumed during the computational process and total power consumption is given in equation
(10).

𝑃𝑑𝑦𝑛 = 𝑐𝑒𝑓𝑓𝑘 ∗ 𝑉2
𝑘 ∗ 𝑓𝑘 (10)

𝐸𝐶𝑖𝑗 = 𝑃𝑑𝑦𝑛𝑖∈𝑁,𝑗 ∈ 𝑀 ∗ 𝐶𝑖𝑗 ′ (11)

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝐸𝑇𝑠𝑦𝑠 = 𝑀𝑎𝑥 𝐴𝐹𝑇 𝑁𝑒𝑥𝑖𝑡 (12)

𝐶𝑆 𝑉𝑖 ,𝑀𝑘 = 𝐶𝑖
′ 𝑉𝑖 ≤ 𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙. 𝑀𝑘𝑡𝑖 (13)

Algorithm 1: SD-Energy Efficient Scheduling Algorithm (SD-EESA)

1. Core initialized with its voltage and frequency.

2. Calculate 𝐶𝑖 ′ =
𝐶𝑖𝑗

𝑓𝑗
to find estimated execution time of task i on core j.

3. Calculate 𝐸𝑖𝑗 = 𝑁 +
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝐸(𝑚 ,𝑛)
 data transmission cost

4. for i = 1 to m do:

5. for j= 1 to m do:

6. 𝑟𝑐 𝑉𝑖 = 𝐶𝑖
′ + 𝑚𝑎𝑥𝑉𝑗 ∈𝑠𝑢𝑐𝑐 𝑉𝑖 𝐸𝑖𝑗

′ + 𝑟𝑐 𝑉𝑗 ∀ 𝑖 ∈ 𝑁

7. 𝑟𝑎𝑛𝑘 𝑐𝑜𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑁𝑖 =
 𝑂𝑅𝑇 𝑉𝑖 ,𝑀𝑘
𝑀
𝑘=1

𝑀

8. 𝑒𝑛𝑑

9. end

10. Tasks are sorted in decreasing order and inserted into ready queue

11. Calculate the utilization of each task 𝑢𝑖 =
𝐶𝑖 ′

𝑝𝑖
.

12. Calculate the actual core utilization at run-time

 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖 =
𝐶𝑖
′

𝑝𝑖
/𝑓𝑘

𝑛
𝑖=1 (14)

2183| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

𝑇𝑈𝑀𝑘

𝑡𝑖 = 𝑢𝑖𝑀𝑘
𝑡𝑖𝑀

𝑘=1 (15)

13. for j = 1: k do:

14. Update the 𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙. 𝑀𝑘𝑡𝑖 every ti time units.

15. 𝐶𝑜𝑟𝑒 𝑢𝑡𝑖𝑙. 𝑀𝑘𝑡𝑖 = 𝑇𝑈𝑀𝑘
𝑡𝑖 + 𝐴𝑇𝑈𝑀𝑘

𝑡𝑖

16. end

17. If Ci’ (Vi) ≤𝑐𝑜𝑟𝑒 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑀𝑘𝑡𝑖 ∶Task assigned to the current core for execution.

18. Else the task is sent back to the re-mapping queue. end

19. Repeat for and if loop until all tasks are allocated at least in one core.

20. Tasks are re-mapped to the cores in a dynamic model based on its utilization requirement.

21. for j=1: M

22. Calculate 𝐸𝑇𝑠𝑦𝑠 = 𝑀𝑎𝑥 𝐴𝐹𝑇 𝑁𝑒𝑥𝑖𝑡

23. Energy consumption is obtained using equation 12.

24. end

V. EXPERIMENTAL SET-UP

Raspberry pi-3 b+ SoC is used for experimental verification which includes quad core multicore as
ARM cortex-A53 (Armv8) with 1.4 GHz maximum frequency, 1 GB internal memory, 64GB external SD
card, 5V/2.5 A DC Power, 2.4 GHz IEEE 802.1 Ethernet support, USB ports, camera, DSI display etc.
The operating frequency variation assumed in between {0.8-1.4 GHz} and voltage {0.85-3.3V} in steps
of 2.IoMT workloads such as “histogram, sensor tasks, aes, cryptography tasks” are used for evaluation.
We also used sensor programs which developed on arudino board such as temperature, pressure,
humidity, camera sensing code, etc. , on the real-time with regular period and deadline metrics. Each
task is assumed with individual deadline and period (inter-arrival time) in the range of {min, max}
values. TGFF [12] is used to generate synthetic task graphs with limited nodes. Periodic task features
such as several instructions in a program, arrival time, computing time, data rate, period, and deadline
are pre-defined for synthetic data sets, which details are given in table 2.

VI. SIMULATION ENVIRONMENT

Simso [24] is a Python based multiprocessing scheduling simulator which is utilized for developing the
‘SESA’ in Ubuntu-18.04 OS with Linux kernel and the memory is 64GB. Psutils and perf tools are used
for performance observations in terms of total execution time, core utilization, energy consumption
with average power consumed.

Table 2. Parameters of Task Graph using TGFF

Parameters Range

No. of. task nodes {5-20} in each graph

No. of. edges {2-10} are varied randomly

Deadline and period 1. {0.1s-15s} and {0.5s-25s}

2. CCR, out degree, {0.1-3}

2184| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

Figure 2. Performance of Proposed Mapping Techniques for MiBench Workloads

VII. PERFORMANCE OF PROPOSED MAPPING TECHNIQUES FOR MIBENCH WORKLOADS

SD-EESA framework is developed for periodic (IoT sensor) applications on asymmetric multicore.
Simulated results are shown in figure 2. Synthetic task graphs and benchmark workloads are tested using
the proposed algorithm. SD-EESA scheduled the periodic tasks based on the online profiling data of active
cores, which updated every‘t= 4ms’ at runtime. The ready tasks are mapped to the appropriate processors
based on the runtime core utilization factor. SD-EESA scheduler.SD-EESA improved the make span
reduction up to 73.7% in average than HEFT and 60.1% on average than R-HEFT method and improved
the make span for MiBench workloads up to 30.6% in average than HEFT and 14.6% on average than R-
HEFT method. For MiBench workloads, energy consumption (reduction) is improved up to 34.9% than
HEFT method and 19.2% than R-HEFT. Energy consumption (reduction) is improved in an average of
61.8% than HEFT and 36.3% than R-HEFT method. The time complexity of the SD-EESA framework is O
(V2.M), where V is the total number of tasks, and M is the number of active cores.

VIII. CONCLUSION

This article addresses the energy efficient scheduling techniques to achieve an optimal solution in
bothsystem execution time and energy consumption of asymmetric multicore architecture. Semi-dynamic
energy efficient scheduling algorithms are designed and developed for periodic applications. The
proposed algorithm includes three different stages, such as task modeling, task prioritization, and core
mapping. The proposed scheduling framework is achieved an optimal solution in both time and energy
with less time complexity O (V2. M). this scheduling framework is evaluated with traditional methods
such as HEFT and robust HEFT. Simulated results show an improvement of 30.6% and14.6% in overall
execution time and 34.9% and19.2% in energy reduction for MiBench workloads.

REFERENCES

1. Liu, "Scheduling Functionally Heterogeneous systems with utilization balancing," IEEE
Transaction on Parallel and Distributed Processing Symposium, (1187-1198), 2011.

2. H.Yazdanpanah, Amin Shouraki, "Evaluation Performance of Task Scheduling Algorithms in
Heterogeneous Environments," International Journal of Computer Applications (0975 – 8887)
Volume 138 – No.8, March 2016.

3. H.Chen, Cheng AMK, "Assigning real-time tasks to heterogeneous processors by applying ant
colony optimization," Journal of Parallel and distributed computing (32-42), 2011.

4. Lee WY "Energy efficient scheduling of periodic real-time tasks on lightly loaded multicore
processors," IEEE Transaction on Parallel and distributed system, 233:530-537, 2012.

5. Huang L, Yuvan F, Xu Q “On task allocation and scheduling for lifetime extension of platform-
based MpSoc designs," IEEE Transaction on Parallel and distributed system, 2212:2088-2099,
2011.

6. Omar Kermia, An efficient approach for the multiprocessor non-preemptive strictly periodic
task scheduling problem, Journal of System architecture, vol.79, 2017.

2185| Gomatheeshwari B Energy Efficient Task Scheduling Algorithms for Performance Asymmetric
 Multicore Architectures

7. Ergin O “Circuit techniques for power-aware micro cores." Master thesis, the State University of
New York, USA

8. Guoqi Xie, Gang Zeng, Liangjiao Liu, Renfa Li, Kequin Li, Mixed real-time scheduling of Multiple
DAGs based applications on heterogeneous multi-core processors, Journal of system
architecture, 2016.

9. Benjamin, Steven, Isabell. Tightening contention delays while scheduling parallel applications
on multi-core architectures, International Conference on Embedded Software(EMSOFT), 2017.

10. Songyun wang, Zhuo Zhong qi, A DVFS Based Energy-Efficient Tasks Scheduling in a Data
Center. IEEE ACCESS Special Section On Emerging Trends, Issues, And Challenges In Energy-
Efficient Cloud Computing Vol 5, 2017.

11. Guoqi Xie, Gang Zeng, Xiongren Xiao, Energy-Efficient Scheduling Algorithms for Real-Time
Parallel Applications on Heterogeneous Distributed Embedded Systems. IEEE Transactions on
parallel and distributed systems, vol. 28, no. 12 December 2017.

12. H.Topcuoglu, S.Hariri “Performance-effective and low-complexity task scheduling for
heterogeneous computing," IEEE Transaction on Parallel and distributed systems, 13(3),
(2002), 260-274.

13. Hamid Arabnejad and Jorge "List Scheduling Algorithm for Heterogeneous Systems by an
Optimistic Cost Table" IEEE Transaction on Parallel and distributed systems, 25(3), March 2014.

14. Jyothi Thaman, Manpreet Singh, "Green Cloud environment by using robust planning algorithm,"
Egyptian informatics of journal, 2017.

15. Neetesh Kumar “A GA based energy aware scheduler for DVFS enabled multicore systems,"
Journal of Computing, 2017.

