

Artificial Intelligence Based Smart Transportation System: A Survey

Prakash Srivastava¹, Arnav Kotiyal ^{2*}, Dr. Namrata Prakash³

^{1,2}Graphic Era (Deemed to be University), Dehradun.

³Associate Professor, School of Management, Graphic Era Hill University, Dehradun.

ABSTRACT

Traffic congestion is getting more and more common throughout the nation and the world as a result of the growing number of motor vehicles. These frequent traffic jams are the outcome of overpopulation and lack of traffic management as well as monitoring system and it hard to control the traffic manually so it is necessary to build a proper traffic management and monitoring system which will be based on Artificial intelligence. In this article a survey is conducted among all the proposed system and methodology which is deployed to build a proper traffic management and controlling system.

Key words: Artificial intelligence, Smart traffic control, machine learning, YOLO.

1. INTRODUCTION

Monitoring and management of transportation system is getting difficult day by day as population is increasing day by day. Due to poor management and monitoring system traffic jams occurs daily. Till date most of the Traffic control systems are operated by humans. these operators are working hard to track the incidents happing in the roads as well as the flow of traffic. the process involved to monitor and control the traffic manually is very hectic as well as time consuming. Due to human error and weariness, certain errors are commonly present in the results. Therefore, to minimize the workload of human operators and make these traffic monitoring systems automated and have less errors Artificial intelligence can be incorporated.

Hence automated surveillance monitoring systems are one of the most significant researched topics and many researches have already been conducted to transform the normal transportation system into intelligent transportation system.

Automated traffic monitoring systems powered by artificial intelligence (AI) not only make it possible to effectively manage traffic but also to monitor and analyze common occurrences which can reduce the frequency of traffic accidents. An Artificial Intelligence powered system can detect every automobile and keep track of its movement patterns to

spot any risky driving habits, like irregular lane changes. The accurate detection of any parked vehicles on the road is another important factor of an AI-powered traffic surveillance system. Parked vehicles are often left behind, which prevents vehicles from moving forward and leads them to line up. These lined up vehicles causes Congestion, which makes it difficult for automobiles to move freely. Thus, intelligent traffic surveillance systems are an essential aspect of the systems required to promptly identify and reduce the effects of traffic and personnel congestion.

In the recent years there are a lot m ore research has been done into using machine learning and deep learning approaches to make more intelligent traffic monitoring system. Now artificial intelligence is doing certain activities like counting the vehicles, checking the vehicle number plate without any human operator's intervention. For example, human operators are required to monitor the CCTV footage to analyze the traffic flow and sometimes they need to be present in the field as well to get estimate traffic count. It can be a fast-paced and tedious task. Similarly, it is very hard to analyze the realtime traffic situation just by looking traffic footage from several surveillance cameras. Therefore, there is a need of deploying automated system that can monitor, analyze the traffic and make a proper traffic management system. By deploying this automated system, it will reduce the workload on human and reduce the human errors as well. At the same time if will help to build a cost efficient traffic management system. In this survey we present all the research work and proposed methods that was present in this field, further we have discussed the machine learning approaches and technologies that are being used in these propose system.

2 LITERATURE SURVEY

In recent years many computer vision-based research has been done to build automatic traffic control and management system. We briefly review a few related articles that concentrate on anomaly detection, traffic flow, and traffic congestion prediction.

2.1. Object detection and classification using Deep Learning

Using deep neural networks and traffic pictures, Willis et al. [1] examined the classification of traffic queues. To detect traffic network congestion, the researchers used a two-phase network that had been trained using GoogLeNet and a custom deep subnet. Chakraborty P. et al. [2] utilized traffic images and deployed D-CNN and YOLO algorithms for a variety of environmental configurations. A deep learning model that uses an RCNN structure to constantly identify vehicle speed was proposed by Wang et al. [3].by using this model and incorporating spatiotemporal traffic data, they were able to identify what was causing the traffic jam on city ring roads. Carli et al. [4] presented an analysis of urban street's automatic traffic congestion. For this purpose, GPS- data was used to generalize the traffic patterns.

Similarly, in this study, the authors have shown how to use a video-based congestion monitoring system, which, while less precise than a GPS-based method, is robust and results in cheaper operational costs. Additionally, given how frequently metropolitan streets are congested, it would be advantageous to find several indications for efficiently **3896** | **Prakash Srivastava** Artificial Intelligence Based Smart Transportation System: A Survey planning transportation systems [5]. Mask R-CNN [6], YOLO [7], and Faster R-CNN [7], are the frameworks most used for object detection frameworks that have been applied in a significant way in the area of intelligent transportation systems. CenterNet[8] is an another object detector but unfortunately it has not been used enough in the field of Intelligent transportation system but in the field of robotic[9-10] CenterNet has been successfully used for object detection. CenterNet is popular for detecting objects in real time due to its faster inference and it has a short formation time. [11].

2.2. Computer Vision based system for Traffic analysis

An automated traffic surveillance system with an object segmentation algorithm that can recognize, track, and detect vehicles from traffic images was presented by Chiu et al., [12]. Their method differentiates between moving and immobile vehicles by using a moving object segmentation algorithm that categorizes different types of automobiles based on geometric aspects of the vehicles.

In addition to detecting traffic jam and motor vehicle counting, few more were examined to investigate anomaly detection systems. To detect traffic accidents at crossings, a motor vehicle tracking technique based on spatio temporal Markov random field was developed by Kamijo et al. [13]. The model used in their research successfully track individual vehicles reliably without being significantly hampered by occlusion and clutter effects. Therefore, computer vision-based techniques have been widely used, mostly as a result of their higher capacity for event recognition. Computer Vision-based systems could be used to quickly extract information about accidents, traffic offences, traffic congestion, and other events. Rojas et al. [14] and Zeng et al. [15] both suggested techniques using a static CCTV camera to identify motor vehicles on a highway, while an approach for identifying traffic offences at crossings was proposed by Ai et al. in [16]. In diverse traffic scenarios, forecast and categories traffic abnormalities. an anomalous finding technique that might be applied in a distributed manner was proposed by Thajchayapong, S. et al. [17]. Image-processing methods were utilized by Ikeda et al. in [18] to automatically identify unusual traffic events. Their technique could identify four different forms of traffic abnormalities, including halted vehicles, slow-moving vehicles, and vehicles that are attempting to change lanes repeatedly.

Sr.	Year	Author(s)	Кеу	Methodology	Research
No			Finding		Gaps
1.	201	Chakraborty P.	YOLO and	you only look	Future
	8	et. al.	D-CNN	once (YOLO)	research
				and deep	could make
				convolution	use of other
				neural	models to
				network	detect varying

Table 1 Literature Review

				(DCNN), to	levels of
				detect traffic	traffic
				congestion	congestion
				from camera	with greater
				images	accuracy.
2.	201	Carli R. et at.	Traffic	The proposed	Future
	5		congestion	methodology	research can
			detection.	uses GPS-	be done to
			using GPS	generated	investigate
			generated	data from a	the
			data	local transit	dependency
				bus	of the
				monitoring	presented
				system and is	algorithm's
				based on the	performance
				idea of using a	of different
				bus as a	aspects like
				probe. In	unavailability
				order to	due to
				generate a	satellite
				detailed	communicatio
				picture of the	n loss.
				congestion on	
				urban roads,	
				offline	
				analysis of	
				archived GPS	
				pulses is	
				conducted to	
				derive useful	
				indices	
				related to	
				general urban	
				traffic	
				characteristic	
				S.	
3.	201	Kaiming He	Mask R-	Mask R-CNN	It only works
	7	et.al.	CNN,	is an	on still
			Object	extension of	images.
			detection,	Faster R-CNN	
			Faster R-		
			CNN		
4.	201	Bochkovskiy, A.	You Only	For GPU	Scope of

	4	et. al.	Look Once	author used a	improvement
			(YOLO),CN	small number	of accuracy in
			N, Object	of groups (1 -	classifier and
			detection	8) in	detector as
			algorithm	convolutional	well
			_	layers:	
				CSPResNeXt5	
				0 /	
				CSPDarknet5	
				3	
				For VPU	
				authors have	
				used	
				combined-	
				convolution,	
				but they	
				abstain from	
				using	
				Squeeze-and-	
				excitement	
				(SE) blocks –	
				in particular,	
				this includes	
				the following	
				models:	
				EfficientNet-	
				lite /MixNet/	
				GhostNet/	
				MobileNetV3	
5.	201	Duan, K.et.al	CenterNet,	CornerNet is	Some more
	9		CornerNet	the baseline of	advance
				this	strategies can
				method.Cente	be used to
				rNet uses	train the
				triplet	method for
				including one	better
				key point and	performance
				two corner	
				point for	
				object	
				detection	
6.	201	Rakhimkul, S et	Assistive	Hidden	The primary
	9	al	Robotic	markov model	issue with this

			manipulati		project is the
			on system,		manipulator's
			deep		blockage of
			learning		the target
					object.
7.	202	Cui, X. et.al	3D	Based on the	The thermal
	0		semantic	edge	infrared
			map, deep	computing	picture and
			learning,	environment,	the depth
			edge	a better ORB-	image can
			computing,	SALM2-based	only be used
			robotics	3D semantic	to estimate
				map creation	poses in a
				for mobile	narrow area
				robots is	with clear
				recommended	features at
				•	this time.
					Additionally,
					there is a
					requirement
					to enhance
					the
					positioning
					effect for a
					range of scene
					types.
8.	199	Kamijo S et.al	Hidden	Hidden	Scope of more
	9		markov	markov model	accuracy after
			model,traffi	was used to	deploying
			С	detect road	other model
			monitoring,	accident and	
			road	tracking the	
			accident	motor	
			detection	vehicles	
9.	199	Zeng N. et. al	Color	Compute	The model
	7		matching,tr	Vehicle	works only on
			affic	Models	still images
			monitoring	Module,	and it is hard
			system	Match	to identify the
				Vehicles	moving
				Module,Evalu	vehicle
				ate module	
10.	199	Andrew H. S. et.	Red light	Red light	The

	8	al	runner	video	assignment of
			detection,vi	methodology	the virtual
			deo base		loop detectors
			identificati		and stop line
			on system		detection are
					negatively
					impacted by
					inadequate
					contrast.
11	201	Thajchayapong,	Distributed	Microscopic	Designing a
	2	S. et.al	traffic	traffic	model that
			monitoring	variables,	can include
			system, ,	feature	data on traffic
			traffic	extraction is	irregularities
			anomalies	based on	from various
			detection	wavelet based	road links to
				filter	deduce
					potential
					effects on the
					entire road
					network is
					one
					component.

3. CONCLUSION

The rapid improvement in artificial intelligence contributes to the construction of an excellent transport system. Using AI in the traffic control system will enhance the transportation model as it has multiple benefits. Smart video monitoring system can reduce the human workload and will provide fast and more accurate results. Building a more precise intelligent transportation system that is capable of object detection, traffic violation detection, vehicle identification, and anomaly detection required the application of deep learning algorithms including Faster R-CNN, YOLO, and Mask R-CNN.

However, further more research work and development in this intelligent management system could bring that extra advantages. Applying human monitoring to these intelligent systems can make these automatic traffic control systems highly effective

REFRENCES

[1] Willis, C., Harborne, D., Tomsett, R., & Alzantot, M. (2017). A deep convolutional network for traffic congestion classification. In Proc NATO IST-158/RSM-010 Specialists' Meeting on Content Based Real-Time Analytics of Multi-Media Streams (Vol. 2017, pp. 1-11).

[2] Chakraborty, P., Adu-Gyamfi, Y. O., Poddar, S., Ahsani, V., Sharma, A., & Sarkar, S. (2018). Traffic congestion detection from camera images using deep convolution neural networks. Transportation Research Record, 2672(45), 222-231.

[3] Wang, J., Gu, Q., Wu, J., Liu, G., & Xiong, Z. (2016, December). Traffic speed prediction and congestion source exploration: A deep learning method. In 2016 IEEE 16th international conference on data mining (ICDM) (pp. 499-508). IEEE.

[4] Carli, R., Dotoli, M., Epicoco, N., Angelico, B., & Vinciullo, A. (2015, August). Automated evaluation of urban traffic congestion using bus as a probe. In 2015 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 967-972). IEEE.

[5] Litman, T. (2007). Developing indicators for comprehensive and sustainable transport planning. Transportation Research Record, 2017(1), 10-15.

[6] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

[7] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

[8] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.

[9] Rakhimkul, S., Kim, A., Pazylbekov, A., & Shintemirov, A. (2019, October). Autonomous object detection and grasping using deep learning for design of an intelligent assistive robot manipulation system. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp. 3962-3968). IEEE.

[10] Cui, X., Lu, C., & Wang, J. (2020). 3D semantic map construction using improved ORB-SLAM2 for mobile robot in edge computing environment. IEEE Access, 8, 67179-67191.

[11] Liu, Z., Zheng, T., Xu, G., Yang, Z., Liu, H., & Cai, D. (2020, April). Training-time-friendly network for real-time object detection. In proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 11685-11692).

[12] Chiu, C. C., Ku, M. Y., & Wang, C. Y. (2010). Automatic Traffic Surveillance System for Vision-Based Vehicle Recognition and Tracking. J. Inf. Sci. Eng., 26(2), 611-629.

[13] Kamijo, S., Matsushita, Y., Ikeuchi, K., & Sakauchi, M. (2000). Traffic monitoring and accident detection at intersections. IEEE transactions on Intelligent transportation systems, 1(2), 108-118.

[14] Mandal, V., Mussah, A. R., Jin, P., & Adu-Gyamfi, Y. (2020). Artificial intelligence-enabled traffic monitoring system. Sustainability, 12(21), 9177.

[15] Zeng, N., & Crisman, J. D. (1997, November). Vehicle matching using color. In Proceedings of Conference on Intelligent Transportation Systems (pp. 206-211). IEEE.

[16] Ai, A. H., & Yungf, N. H. (1998). A video-based system methodology for detecting red light runners.

[17] Thajchayapong, S., Garcia-Trevino, E. S., & Barria, J. A. (2012). Distributed classification of traffic anomalies using microscopic traffic variables. IEEE Transactions on Intelligent Transportation Systems, 14(1), 448-458.

[18] Ikeda, H., Kaneko, Y., Matsuo, T., & Tsuji, K. (1999, October). Abnormal incident detection system employing image processing technology. In Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No. 99TH8383) (pp. 748-752). IEEE.