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Abstract. This study aims to analyze the mathematical literacy abilities of students using IRT with the 
GPCM approach. The results of the model compatibility test show that the GPCM is suitable for analyzing 
mathematical literacy test instruments with 4 levels of mathematical literacy. The results of the item 
parameter estimation show that there is 1 level of mathematical literacy which has a high category for 
item discrimination, while the other 3 levels have a medium category. Based on item difficulty levels, 1 
level of mathematical literacy has a difficult category, while 3 levels have easy categories. Most students 
are at the level of ability 0 < θ < 1, and there are 52% of students above the average mathematical literacy. 
Based on the test information function and the standard error shows that the mathematical literacy 
instrument is suitable for students with the ability -2 < θ < -0.5. 
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INTRODUCTION 

Mathematics as a compulsory subject is expected to provide students with the ability to reason and analyze 
in solving daily problems (Gravemeijer, Stephan, Julie, Lin, & Ohtani, 2017). Paulos (Nickerson, 2011) 
argues that mathematics is not a matter of entering numbers into formulas and performing memorization 
procedures. However, mathematics is a way of thinking and questioning something foreign to students. Van 
de Walle, Karp, & Bay-Williams (2010) revealed that doing mathematical activities means producing 
strategies to solve problems, applying an approach, investigating the process of whether it leads to a 
solution, and checking whether the resulting answer makes sense. Mathematical activities in class must be 
done carefully in modeling real-world things into mathematics (Blum & Ferri, 2009). Related to that, 
Schoenfeld (1992) holds that mathematics is used as a tool to understand the patterns that exist in the 
world around us, as well as the patterns that exist in our minds. In this opinion, mathematics can be 
interpreted as a broad science of pattern searching (Resnik, 1997). 

In line with this opinion, Kilpatrick & Swafford (2002) argues that mathematical skills involve five 
interrelated abilities, namely: 1) understanding mathematical concepts, 2) calculating fluently, 3) applying 
mathematical concepts to solve problems, 4) reasoning logically, and 5) involved with mathematics, seeing 
mathematics as something that makes sense, is useful, and can be done. These five abilities will appear fully 
in the process of solving real problems. This is in line with the view of NCTM (Reys, Lindquist, Lambdin, & 
Smith, 2009), problem-solving, reasoning and proof, communication, and representation are used as 
standard processes in learning mathematics. Such mathematical abilities are known as mathematical 
literacy abilities. 

In PISA (OECD, 2013), mathematical literacy refers to the ability of students to formulate a problem, 
use mathematical concepts, and interpret mathematical problem-solving in various contexts. This activity 
involves the process of mathematical reasoning using mathematical concepts, procedures, facts, or tools to 
provide an overview, explanation, and prediction of a phenomenon. Students who have good mathematical 
literacy skills will better understand the role of mathematics so that it will provide strong support in 
making appropriate assessments and decisions (Jablonka & Niss, 2014). This shows that mathematical 
literacy does not only play a role in the process of mastering mathematical material, but mathematical 
literacy is also used in the process of using mathematical reasoning, concepts, and tools in solving everyday 
problems (Österman & Bråting, 2019). 
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Based on this description, it is clear that mathematical literacy is an important ability in learning 
mathematics. So far, the estimation of mathematical literacy ability is based on the results of an analysis of 
the responses or answers given by students globally by using the Classical Test Theory (CTT). CTT has been 
widely used in the field of measurement until now. However, CTT has various limitations including: 1) the 
characteristics of test items in the form of difficulty and discrimination of items depending on the 
characteristics of test-takers; 2) the ability of the test takers to depend on the characteristics of the items 
being tested; 3) error score estimation applies to all test takers; 4) can not provide information about the 
response to each item; and 5) using parallel assumptions that are sometimes difficult to fulfill, such as mean 
and variance must be the same (Fan, 1998; Lawson, 2006; Mardapi, 2008; Stage, 2003). The same thing 
was stated by Hambleton and Swaminathan (1985) that the assumption of parallel tests on CTT is difficult 
to fulfill, and does not provide information about the ability of test-takers. 

In addition to CTT, there is an Item Response Theory (IRT) that can be used to analyze mathematical 
literacy abilities. The difference between the two analyzes is the focus of the information provided (Janssen, 
Meier, & Trace, 2014). CTT focuses on test level information, while IRT focuses on item level information 
(Bichi, Embong, Mamat, & Maiwada, 2015). Therefore, it is expected that IRT can cover the deficiencies 
found in CTT. The most important thing in IRT is the determination of response models or item 
characteristics. The response model must meet several assumptions underlying IRT, namely: 1) local 
independence, meaning that the opportunity to answer one item correctly is not influenced by the 
opportunity to answer another item correctly; 2) unidimensional, meaning that the test measures one 
dimension of ability; and 3) parameter invariance, meaning that the response pattern of each test item can 
be described in the form of item characteristic curves (Hambleton, Swaminathan, & Rogers, 1991; Naga, 
1992). IRT built a model that connected the characteristics of items with the characteristics of the 
participants. With several specific conditions, this relationship model is made to apply freely to any item 
groups and groups of participants who meet these requirements. This study aims to analyze empirically 
the characteristics of mathematical literacy ability tests based on IRT. 

METHODS 

This research is a quantitative descriptive study, which aims to analyze empirically the characteristics of 
mathematical literacy ability tests based on IRT. The data collection of mathematical literacy skills was 
carried out through a written test with an allocation of 60 minutes to 258 students. The test in the form of 
description consists of 4 items of mathematical literacy questions, each of which represents 4 levels of 
mathematical literacy from level_1 to level_4. The test is arranged with reference to the level and indicators 
of mathematical literacy abilities, which are associated with mathematics material class VII, namely lines 
and angles, mathematical comparison, Cartesian coordinates, and scaling.  

The polytomous item response model is used to scale students' responses to a test item. The variety 
of test data generated by polytomous items can be grouped into two, namely: 1) tests with all items having 
many of the same response categories, and 2) tests with items having many diverse response categories 
(Nandakumar, Yu, & Zhang, 2011). In this study, scoring polytomous items using 7 scales (0 to 6) was 
carried out by looking at the stages of the test participants at each level of mathematical literacy. Some 
researchers say the use of 7 scales will maximize the reliability of internal consistency, but some mention 
4 scales and another 3 scales (Chang, 1994). Linn and Gronlund (Boughton, Klinger & Gierl, 2001) 
recommend the use of a scale of 3 – 7 categories. 

The mathematical literacy test allows us to have many different response categories for each item. 
This is due to the operational level of mathematical literacy ability on each item is different. There are 
several polytomous models on the IRT (Van der Linden & Hambleton, 1997) including the Rating Scale 
Model (RSM), Graded Response Model (GRM), Partial Credit Model (PCM), and Generalized Partial Credit 
Model (GPCM). Related to discriminant parameters, the Rasch model assumption (PCM) where inter-items 
have the same discrimination value on empirical data is usually violated (Ware, Bjorner & Kosinski, 2000). 
RSM cannot be used if the item score category varies among items and PCM is a model with a fixed 
discriminant factor value for all items. Therefore, the item response model that might be used is GRM or 
GPCM. In this study, data analysis techniques were performed using the IRT model with the GPCM approach 
and computation using the R software. 

In GPCM, the probability of a test participant having a k category is explained that someone with a 
certain level of ability reaches the k score category beyond the (k – 1) score category (Tang, 1996). If there 
is an item that is polytomous scored having m score categories, then the higher score category represents 
a higher ability than (m – 1). However, the level of difficulty in the second stage does not have to be higher 
than in the first stage, and vice versa (De Ayala, 1993). According to Muraki (1999), GPCM is a common 
form of PCM. GPCM is similar to PCM in that it conceptualizes the choice of characteristic curve options. 
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GPCM is also similar to the 2PL model where item discrimination parameters can vary in each item. GPCM 
estimates the unique item discrimination parameters for each item. The item discrimination parameter 
indicates the extent to which category responses vary between items when the latent trait changes (Muraki, 
1992). 

Opportunities to obtain the Xik category (Xik = 0, 1, 2, …, mi) in item i for GPCM (De Ayala, 2013) can 
be written as follows. 

P(Xi | θ, ai, δik) =  
exp ∑ ai(θ − δih)

Xik
h=0

∑ exp ∑ ai(θ − δih)c
h=1

mi
c=1

  

In the formula P(Xi | θ, ai, δik) it is explained that θ is a latent trait, aiis a discrimination parameter for item 
i, δik is a step parameter (difficulty step) that represents the relative difficulty in obtaining the category k 
beyond the category (k – 1). The threshold (δik) in GPCM is similar to PCM, that is, the threshold is not 
limited in the same order as the response category. 

RESULTS AND DISCUSSION 

In conducting data analysis using item response theory, the first thing to do is to examine the dimensions 
of the empirical data obtained. It is important to ensure unidimensionality, where only one latent attribute 
can explain the whole matrix of test participants' responses (Lord, 1980). Information about the 
dimensionality of this test will also provide structural evidence related to the consistency between the 
internal structure of the test and the construct structure (Fiske, 2002). Then information about the 
structure of these dimensions can be used as a foundation in reporting scores or subscales. 
Multidimensionality will occur when tests are designed to measure complex latent attributes (Camilli, 
Wang, & Fesq, 1995). If a test is designed to measure complex latent attributes, it is difficult to claim that 
the construct measured is pure unidimensional. 

Conditioning so that scores are comparable between groups or between times should be a serious 
concern because it involves validity, especially aspects of generalization (Messick, 1995). Structural 
differences between groups or time can be traced based on their dimensionality (Tate, 2002). Formally, the 
dimensionality of a test can be defined as the minimum number of dimensions that can explain to data and 
models so that they are Monotone Locally Independent (MLI) (Stout, 2002). The testing process is carried 
out by the Exploratory Factor Analysis (EFA) with the principal component method. The initial 
assumptions that must be met in the EFA are the KMO and Bartlett tests. The KMO and Bartlett Test outputs 
are presented in Table 1. 

Table 1. KMO and Bartlett test outputs 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.783 
Bartlett's Test of Sphericity Approx. Chi-Square 315.157 

df 6 
Sig. 0.000 

 
The results of the KMO Test are KMO > 0.5, which indicates that the sample size of 258 already has 

sufficient data. Also, the significance of Bartlett's test (sig. < 0.05) indicates that the HO (correlation matrix 
is the identity matrix) is rejected so that the data form a correlation matrix with a close relationship 
between variables. Then based on anti-images correlation, Measures of Adequate Sampling (MSA) > 0.5 so 
that all data are feasible for factor analysis. The Anti-image Matrices output is presented in Table 2. 

Table 2. Anti-image matrices 

Anti-image 
Correlation 

 Item_1 Item_2 Item_3 Item_4 

Item_1 0.767a -0.321 -0.240 -0.322 

Item_2 -0.321 0.769a -0.327 -0.225 

Item_3 -0.240 -0.327 0.802a -0.063 

Item_4 -0.322 -0.225 -0.063 0.807a 

a. Measures of Sampling Adequacy (MSA) 

 
Principal Component Analysis (PCA) can be used to minimize the number of variables observed so 

that a small number of main components is formed from most of the variance of the observed variables. 
The number of factors can be determined by selecting factors that have an eigenvalue greater than 1. 
Eigenvalues from the PCA are presented in Table 3. 
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Table 3. Eigenvalues of principal component analysis 

Component Initial Eigenvalues 
Total % of Variance Cumulative % 

dimen
sion0 

1 2.512 62.793 62.793 
2 0.633 15.830 78.622 
3 0.443 11.080 89.702 
4 0.412 10.298 100.000 

 
The results of the factor analysis show that there is 1 factor that has an eigenvalue of more than 1. It 

can be said that the 4 items analyzed are grouped into 1 factor which can explain about 62.79% of the total 
variance, which means that these factors are more than the average total variance in the items (Guttman, 
1954; Kaiser, 1960). The first-factor eigenvalue is several times the second-factor eigenvalue, then the 
second-factor eigenvalue and so on are almost the same. Therefore, mathematics literacy tests meet the 
requirements of unidimensional (Naga, 1992). The unidimensional nature can be described more clearly 
by the scree plot by finding the elbows (bends) in Figure 1. 

 

 

Fıgure 1. Scree plot of principal component analysis 

Thus, empirical data shows that items of mathematical literacy only measure one factor 
(unidimensional). Dimensionality in measurement can also be interpreted as the number of latent 
attributes that underlie the ability of test-takers to respond to test items (Chou & Wang, 2010). In the 
context of ability tests, dimensionality is referred to as the number of abilities measured by a test or by a 
collection of items. When related to the content of the test material, dimensionality can be seen as aspects 
of measurement designed to be measured by the test (Mislevy, Almond, & Luke, 2003) or can also be seen 
as an analysis of the response data on a set of items (Reckase, 2009). This dimensional analysis is an EFA 
that is used to identify the relationship between manifest variables or indicator variables in constructing 
mathematical literacy constructs. 

The results of EFA with the principal axis factoring and rotation = varimax methods obtain a factor 
loading of each item on one factor or dimension. EFA results are shown in Figure 2. Factor loading is a 
coefficient that explains the level of relationship of items with latent variables in the form of mathematical 
literacy. The EFA results obtained factor loading at intervals of 0.63 – 0.78 (factor loading > 0.30), which 
means that instrument items can correctly interpret mathematical literacy (Brown, 2015; Harrington, 
2009; Thompson, 2004). 
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Fıgure 2. Factor loadings from exploratory factor analysis results 

The development of test instruments must also pay attention to test reliability. Crocker and Algina 
(1986) describe reliability as a measure of instrument consistency in the resulting score. Reliability means 
the extent to which the results of measurement have credibility, reliability, constancy, consistency, stability 
that can be trusted (Chakrabartty, 2013). The consistency of the test in question is if the measurement of 
the same attribute is repeated then the test will give identical or very similar condition results. Reliability 
refers to measurements whose results are consistent with the same value (Blumberg, Cooper, & Schindler, 
2014). This shows the extent of measurement without bias by ensuring consistent measurement times. A 
set of tests is said to be reliable if it has a high correlation between the observed score and the actual score 
(Allen & Yen, 1979). Reliability (ρ) of a test is generally expressed numerically in the form of coefficients of 
magnitude -1 ≤ ρ ≤1. The higher the reliability coefficient, the more accurate the results will be, which 
means increasing the opportunity to make correct decisions in this study. The reliability test on this 
mathematical literacy test instrument uses Cronbach's alpha technique and produces a reliability 
coefficient of 0.796 which is included in the high category. 

Furthermore, the data were analyzed with unidimensional item response theory for polytomous 
items, using GPCM. The S_X2 test was chosen to test item-fit in this study because the S_X2 item-fit index is 
suitable for polytomous IRT model items in educational and psychological testing programs (Kang & Chen, 
2007). The S_X2 index can also be generalized and applied to a good-of-fit test for polytomous items, such 
as GPCM (Roberts, 2008). Model match test results are presented in Table 4. Based on the value of p. S_X2 > 
0.05 for each item shows that GPCM is suitable for analyzing mathematical literacy abilities. 

Table 4. Results from the model compatibility test 

Item S_X2 df.S_X2 RMSEA.S_ X2 p.S_X2 

Item_1 25.439 22 0.025 0.277 

Item_2 34.493 26 0.036 0.123 

Item_3 34.287 28 0.03 0.192 

Item_4 25.17 24 0.014 0.397 

 
Item parameter estimation using GPCM will reveal two-item parameters, namely difficulty level and 

distinguishing power. The parameter a explains how much the item can distinguish between individuals 
with different abilities. The parameter b is interpreted as the relative difficulty of a step compared to other 
steps in an item. The parameter bi can be interpreted as the estimated value of the difficulty level parameter 
to reach the value category i. Scoring each item uses 7 scales, so each item has 6 item difficulties (b i, with i 
= 1, 2, 3, ..., 6). The results from the estimated parameters of mathematical literacy items are presented in 
Table 5. 

Table 5. Item parameter estimation using GPCM 

Item a b b1 b2 b3 b4 b5 b6 

Item_1 1.543 -0.694 -2.793 -1.812 -1.004 -0.972 0.968 1.447 

Item_2 1.173 -0.821 -2.276 -2.244 -0.909 -0.381 0.406 0.480 
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Item_3 0.804 -0.765 -1.902 -1.906 -0.767 -1.792 -0.115 1.892 

Item_4 0.896 0.803 -0.885 0.508 0.736 1.588 1.143 1.728 

 
There are 3 steps in 2 items that have an item difficulty level below -2.0, but for an average of item 

difficulty levels are good. Similarly, the distinguishing power of each item is quite good. An item is classified 
as good if it has a discrimination index of items 0.0 to 2.0 and an index of difficulty -2.0 to 2.0 (Hambleton 
& Swaminathan, 1985). Generally, applies bi < bi+1, because students will complete a step if they have 
completed the previous step. Item_3 and the scoring need to be reviewed, because item_3 applies b2 < b1 
and b4 < b3. 

Based on the item discrimination index, item_1 has the highest discrimination index compared to 
other items. This means that item_1 can distinguish students' mathematical literacy abilities well. Item_1 
indicator is the student can determine the angle rotation in degrees in the Ferris wheel problem. The level 
of mathematical literacy ability on item_1 is level_1. At level_1, students are expected to be able to answer 
questions in a general context that is familiar to students. All information relevant to solving the questions 
is available on the question points. Based on explicit question instruction, students can identify 
information, then use routine procedures to solve it. Items with explicit instruction are effectively used to 
help students who have difficulty learning mathematics. According to Doabler and Fien (2013), explicit 
instruction can be used by teachers to facilitate students in understanding critical mathematics content. 
This can help students take action by the stimulus provided. 

Item_3 has the lowest discrimination index compared to other items but is still included in the 
medium category. Item_3 deals with Cartesian coordinates with problems determining the position of 
objects. The level of mathematical literacy ability on item_3 is level_3. At level_3 students are expected to 
be able to carry out procedures well, including procedures that require decisions in sequence. It is 
important to understand how the order of decisions made by students that will affect observations and 
optimal results based on criteria (Maillard, 2019). Students can select and implement a variety of problem-
solving strategies ranging from simple strategies to complex strategies (Gick, 1986). Students can interpret 
and use representations based on different sources of information and can then state the reasons. Also, 
students can communicate the results of interpretations and their reasons. Giving a reason can be used to 
investigate students' construction errors in mathematical representation. Construction errors experienced 
by students can occur in various forms, namely loss of representation attributes, mapping from one 
representation attribute to another, mixing of two different schemes that appear simultaneously, 
disconnecting connections at the initial coordination stage, and implementation errors (Afriyani, Sa'dijah, 
Subanji, & Muksar, 2019). 

Based on the level of difficulty, item_2 has the lowest value compared to other items, meaning that 
item_2 is easiest. The problem with item_2 is related to the comparison material, i.e. determine the time 
needed to spend the medicine according to the rules. The level of mathematical literacy ability on item_2 is 
level_2. At level_2, students are expected to be able to interpret information and recognize situations in a 
mathematical context that require direct inference. Students sort the relevant information from a single 
source and use a single representation. Students can work on basic algorithms, use formulas, carry out 
procedures, or simple conversions. Students can provide reasons directly and make interpretations. Some 
of the interpretations that students can do include: 1) interpreting simple text and linking it correctly to 
graphic elements; 2) interpret a simple text containing a simple algorithm and then apply it; 3) interpret a 
simple text by using proportional reasoning or doing calculations; and 4) interpret simple patterns (OECD, 
2004). 

Item_4 has the highest item difficulty level compared to other items. Item_4 deals with scaling 
material, i.e. calculating the area of an area based on a map using the concept of scale. The level of 
mathematical literacy ability in item_4 is level_4. At level_4, students are expected to be able to do 
mathematical modeling effectively in complex concrete situations. Students can select and integrate 
different representations, and relate to real situations. Students can use their skills well in suggesting a 
reason and a flexible viewpoint according to the context. Students can provide explanations and 
communicate them with arguments based on their interpretations and actions. 

Categorical Response Function (CRF) curves indicate the likelihood of respondents choosing a 
particular score on a scale (0 – 6) at various levels of latent traits. An item will be better at distinguishing 
the abilities of each individual if the curve peaks and spreads at all levels of latent traits. The relationship 
of the probability of answering correctly for each ability is presented in the Categorical Response Function 
(CRF) curve in Figure 3.  
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Fıgure 3. Categorical response function graph 

GPCM is formulated based on the assumption that each probability of choosing the k-th category beyond 
the (k – 1) category is built by a dichotomous model (Muraki, 1992; 1993). The parameter bjk is the 

intersection point between the Pjk(θ) curve and Pjk−1(θ) curve. The two curves only intersect at one point 

on the scale of θ (Van der Linden & Hambleton, 1997) with 3 possibilities as follows: 1) If θ =  bjk, then  

Pjk(θ) =  Pjk−1(θ); 2) If θ >  bjk, then Pjk(θ) >  Pjk−1(θ); and 3) If θ <  bjk, then Pjk(θ) <  Pjk−1(θ), k = 1, 2, 3, 

..., mj. Pjk is a special probability of choosing the k category from the mj +1 category. 

The threshold shows the meeting point of two category probability lines in one item. The threshold 
is a point where two categories have the same probability to be chosen by the related level of the trait 
(Linacre, 2006). The individual's probability of responding to category x at this stage mi is the difference 
between the trait level (θ) and the threshold (δij). The intersection of P1 and P2 shows the minimum ability 

students must have to get a score of 1, the intersection of P2 and P3 shows the minimum ability a student 
must have to get a score of 2, and so on. In general, it can be written that the intersection of Pi and Pi+1 shows 
the minimum ability students must have to get a score of i. A good item if the intersection of Pi and Pi+1 is to 
the left of the intersection of Pi+1 and Pi+2, which means the ability that must be possessed to get i score is 
lower than the ability that must be had to get a score of (i +1) (Embretson & Reise, 2000). This applies to 
item_1, item_2, and item_4, but does not apply to item_3. However, the value of δij does not always have to 

be sequential on item i because δij is a relative magnitude of two adjacent probabilities (De Ayala, 1993; 

Muraki, 1992). The threshold can also be interpreted as a point on the latent trait scale, where the response 
curves will intersect for two consecutive categories. 

There are several approaches to estimating mathematical literacy abilities, including Maximum 
Likelihood Estimation (MLE), Maximum A Posteriori (MAP), and Expected A Posteriori (EAP) (Embretson 
& Reise, 2000). MLE is a general method for estimating model parameters, is quite effective with large 
samples and valid model applications (Longford, 2008). MLE has many optimal properties in the 
estimation, namely: information sufficiency, data consistency, efficiency, and invariant parameterization 
(Myung, 2003). The highest odds will depend on the probability of correct answers and wrong answers by 
participants, and also on the logistical parameters used. Thus, determining the value of maximum capability 
is done through iteration calculations (Baker, 2001). MAP estimation is almost the same as MLE, only MAP 
calculation using Fisher scoring using posterior information (Han, 2016). The EAP method is based on the 
Bayes theorem which combines the previous distribution with the sample distribution (Baker, 1991; Bock 
& Aitkin, 1981). 
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Figure 4. Histogram of the mathematical literacy ability distribution 

The results of the test taker's ability estimation with all three approaches are presented in Figure 4. 
The mathematical literacy abilities of students spread normally. This is consistent with the theory that the 
more respondents, the estimated distribution of ability will approach the normal distribution. MAP and 
EAP produce estimates of the same mathematical literacy ability, while MLE produces slightly different 
estimates of ability. Estimated literacy abilities of students with the MAP and EAP approaches are at 
intervals of -3 < θ < 3, while the estimated abilities of the MLE approach are 3 students have too low ability 
and 6 students have the too high ability. Most students are at the level of ability 0 < θ < 1, and there are 
52% of students above the average of mathematical literacy. 

Item Information Function (IIF) represents information contributed by certain items that cross the 
range of abilities θ (Muraki, 1993). The item information curve shows how well and precisely each item 
can measure the latent trait across various levels of student ability (Figure 5). Item_1 and item_3 provide 
more information at a low level of mathematical literacy, item_2 provides more information at a moderate 
level of mathematical literacy, while item_4 can provide more information at a higher level of mathematical 
literacy. 

 

 

Fıgure 5. Graph of ıtem ınformation function 

3 6

3
9

7
5

9
5

3
1

3 6

0

5

3
2

8
6

1
0

0

2
9

6

00

5

3
2

8
6

1
0

0

2
9

6

0

Ɵ  <  - 3 - 3  ≤  Ɵ  <  - 2 - 2  ≤  Ɵ  <  - 1 - 1  ≤  Ɵ  <  0 0  ≤  Ɵ  < 1 1  ≤  Ɵ  <  2 2  ≤  Ɵ  <  3 Ɵ  ≥  3

MLE MAP EAP



1234 |SINTHA SIH DEWANTI                                                                 The Application of Item Response Theory in Analysis of Characteristics of 

Mathematical Literacy Test Items  

 

Fıgure 6. Graph of the relationship between test ınformation function and standard error 

The sum of the information functions of the items making up the mathematical literacy test can be 
expressed as a test information function (Hambleton & Swaminathan, 1985). The test information function 
is correlated with the item information function. The test device information function will be high if the 
item has a high information function too. Item parameter index values and mathematical literacy 
capabilities of the analysis results are estimation results that cannot be separated from measurement 
errors. The standard error of measurement has a quadratic inverse relationship with the information 
function (Hambleton, Swaminathan, & Rogers, 1991). The relationship of the information function and 
standard error is presented in Figure 6. The mathematical literacy instrument is suitable for students with 
the ability -2 < θ < -0.5 shown in the ability to have the maximum value for the information test or the 
minimum value for standard error. 

CONCLUSIONS 

Exploratory Factor Analysis results show that the mathematical literacy test measures 1 factor, so the 
analysis uses the unidimensional item response theory. The results of the model compatibility test show 
that GPCM is suitable for analyzing mathematical literacy test instruments with 4 levels of mathematical 
literacy. The estimation results of item parameters using GPCM indicate that level_1 item have a high item 
discrimination category, whereas level_2 item, level_3 item, and level_4 item have medium item 
discrimination categories. Based on the difficulty level of items, level_1 item, level_2 item, and level_3 item 
has easy categories, whereas level_4 item has difficult categories. Estimation of students' abilities uses 3 
approaches, namely MLE, MAP, and EAP. Most students are at the level of ability 0 < θ < 1, and there are 
52% of students above the average of mathematical literacy. Based on the test information function and 
the standard error shows that the mathematical literacy instrument is suitable for students with the ability 
-2 < θ < -0.5 shown in the ability to have the maximum value for the information test or the minimum value 
for standard error. 
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