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Abstract-  

Utilizing the processes of mathematical methods and the limited distinctions, an attempt is 

performed in this piece to locate the configuration of a one-layered Heat condition complete 

with starting and limit conditions. We determined the values of V(x, t)at various cross 

section locations by applying the Bender-Schmidt repeat connection equation. We went on 

to make use of the double interpolation and identified the organization of the heat condition 

as a double interpolating polynomial. We then represented the solution graphically. 
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1. Introduction- 

Our economy will suffer as a direct result of the expansion of armed conflict in the Catatumbo 

neighbourhood. The current situation, which is reflected in the high rates of homelessness, 

demonstrates the necessity of putting forward solutions to this problem. It would be 

fascinating for the residents of Catatumbo, Colombia, to see government assistance produced 

as a result of the advancement of exploration revolving around new technological 

developments. The investigation of power-free devices is an important step in this direction, 

particularly in regions experiencing a poor turn of events financially. At the moment, one 

source of growing revenue is the investigation of different cooling methods and the effect 

that these techniques have on better locations. 

Iyengar and Manohar (1988) applied the fourth-request distinction strategy for the 

purpose of arranging Poisson's situation in barrel-shaped facilitates. They expanded the 

method to settle the heat condition in two-layered configurations with polar directions and 

three-layered configurations with barrel-shaped arranges. Marwah and Chopra (1992) 

presented an absolutely remarkable scientific methodology that was utilized to determine 

the transient intensity conduction condition in a one-layered empty compound chamber 

with time-subordinate limit conditions. According to Sabaeian et al. (2008), the work on 
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temperature conveyance is essential in the estimation, reenactment, and forecasting of 

warm impacts. Ciegis et al. (2010) create and validate numerical models as well as 

mathematical calculations for the purpose of recreating intensity movement in composite 

materials. Javed (2012) gained knowledge regarding sources of dry or wet intensity. The 

term "dry applications" refers to items such as electric cushions, boiling water bottles, and 

brilliant intensity. It is commonly believed that wet intensity is more penetrating than dry 

intensity; however, this perception is more likely due to the fact that water-soaked materials 

lose heat at a slower rate than dry ones. Shiferaw and Mittal (2013) took on the challenge of 

solving a three-layered Poisson's condition using a limited contrast strategy in a barrel-

shaped organizing structure. When performing a mathematical reenactment of 2D 

convection-dispersion in barrel-shaped facilitates, Mori and Romo (2015) used the limited 

distinction technique. The Forward Time Central Space Scheme (FTCSS) was inferred for the 

intensity condition by Kafle et al. (2020). They also determined its mathematical 

arrangement by utilizing FTCSS, and they investigated the logical arrangement as well as the 

mathematical answer for a variety of homogeneous materials (for a variety of advantages of 

diffusivity α). Khatun et al. (2020) presented the findings of their investigation into the safety 

of a one-layered heat condition. A mathematical method was suggested by Maturi et al. 

(2020) in order to determine the correct answer for the intensity conduction condition of 

copper. They zeroed in on copper because it is exceptionally well suited to take the lead in 

terms of heat and electrical conductivity. For the purpose of addressing the two-layered 

Schrodinger condition in polar directions, Salehi and Granpayeh (2020) presented a limited 

distinction method as a potential solution. In one respect, Meyu and Koriche (2021) 

presented the essential treatment of the arrangement of intensity condition. Tsega et al. 

(2022) took on the challenge of a three-layered transient intensity conduction condition. 

They did this by approximating second-request spatial subordinates with five focal contrasts 

in tube-shaped facilitates. In addition to that, he addressed the matter of the strength 

condition. 

 

2. Formulation of the Problem: 

In this discussion, we will focus on the following boundary value problem associated with 

the one-dimensional heat equation. A partial differential equation (PDE) that is frequently 

defined by may tell you how hot or cold a rod is  
∂V

∂t
= K2 ∂2V

∂t2             (1) 

Where V(x, t)  is the temperature of the pole estimated at position x at time t, and K is 

the warm diffusivity of the material, which estimates how well the bar can lead heat, 

Dependent upon the accompanying limit conditions 

V(0, t) = 0             (2) 
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V(1, t) = 0            (3) 

 V(x, 0) = sinπx            (4) 

Where 0 ≤ x ≤ 1 and t > 0 

For the solution of this problem, Let we take K2 = 1 

Analytic Solution of the above problem is 

V(x, t) = sinπx eK2π2t  

The interval of differencing of x as 0.2 i.e. h = 0.2 

From Bender Schmidt equation, the time span of t as 

k =
h2

2c2 =
(0.2)2

2
= 0.02         (5) 

Thus x0 = 0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, x5 = 1 

t0 = 0, t1 = 0.02, t2 = 0.04, t3 = 0.06, t4 = 0.08, t5 = 0.1  

We have a total of 25 mesh points after drawing straight lines parallel to the coordinate axis 

(t, x). 

x 

t 

0 0.2 0.4 0.6 0.8 1 

0 0 0.59 0.95 0.95 0.59 0 

0.02 0 0.475 0.77 0.77 0.475 0 

0.04 0 0.385 0.6225 0.6225 0.385 0 

0.06 0 0.3113 0.504 0.504 0.3113 0 

0.08 0 0.408 0.252 0.252 0.408 0 

0.1 0 0.204 0.33 0.33 0.204 0 

Table-1 

S.  No. 𝑉1𝑖 ∆0+1𝑉1𝑖 ∆0+2𝑉1𝑖 ∆0+3𝑉1𝑖 ∆0+4𝑉1𝑖 ∆0+5𝑉1𝑖 

1 0.59 -0.115 0.025 -0.0087 0.1628 -0.788 

2 0.475 -0.09 0.0163 0.1541 -0.6252  
3 0.385 -0.0737 0.1704 -0.4711   
4 0.3113 0.0967 -0.3007    
5 0.408 -0.204     
6 0.204 
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Table-2 

S.  No. 𝑉2𝑖 ∆0+1𝑉2𝑖 ∆0+2𝑉2𝑖 ∆0+3𝑉2𝑖 ∆0+4𝑉2𝑖 ∆0+5𝑉2𝑖 

1 

0.95 

-0.18 0.0325 

-

0.0035 -0.159 0.785 

2 

0.77 

-0.1475 0.029 

-

0.1625 0.626  

3 

0.6225 

-0.1185 

-

0.1335 0.4635   
4 0.504 -0.252 0.33    
5 0.252 0.078     
6 0.33      

 

Table-3 

S.  No. 𝑉3𝑖 ∆0+1𝑉3𝑖 ∆0+2𝑉3𝑖 ∆0+3𝑉3𝑖 ∆0+4𝑉3𝑖 ∆0+5𝑉3𝑖 

1 

0.95 

-0.18 0.0325 

-

0.0035 -0.159 0.785 

2 

0.77 

-0.1475 0.029 

-

0.1625 0.626  

3 

0.6225 

-0.1185 

-

0.1335 0.4635   
4 0.504 -0.252 0.33    
5 0.252 0.078     
6 0.33      

 

Table-4 

S.  No. 𝑉4𝑖 ∆0+1𝑉4𝑖 ∆0+2𝑉4𝑖 ∆0+3𝑉4𝑖 ∆0+4𝑉4𝑖 ∆0+5𝑉4𝑖 

1 0.59 -0.115 0.025 -0.0087 0.1628 -0.788 

2 0.475 -0.09 0.0163 0.1541 -0.6252  
3 0.385 -0.0737 0.1704 -0.4711   
4 0.3113 0.0967 -0.3007    
5 0.408 -0.204     
6 0.204 
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Table-5 Since both the First and the Last Column of Table 1 contain 0, this means that 

∆0+1𝑉00 = ∆0+2𝑉00 = ∆0+3𝑉00 = ∆0+4𝑉00 = ∆0+5𝑉00 = 0      (6) 

And ∆0+1𝑉50 = ∆0+2𝑉50 = ∆0+3𝑉50 = ∆0+4𝑉50 = ∆0+5𝑉50 = 0     (7) 

From Table 2, we get 

∆0+1𝑉10 = −0.115, ∆0+2𝑉10 = 0.025, ∆0+3𝑉10 = −0.0087, ∆0+4𝑉10 = 0.1628, ∆0+5𝑉10 =

−0.788            (8) 

From Table 3, 

∆0+1𝑉20 = −0.18, ∆0+2𝑉20 = 0.0325, ∆0+3𝑉20 = −0.0035, ∆0+4𝑉20 = −0.159, ∆0+5𝑉20 =

0.785             (9) 

From Table 4, 

∆0+1𝑉30 = −0.18, ∆0+2𝑉30 = 0.0325, ∆0+3𝑉30 = −0.0035, ∆0+4𝑉30 = −0.159, ∆0+5𝑉30 =

0.785             (10) 

From Table 5 

∆0+1𝑉40 = −0.115, ∆0+2𝑉40 = 0.025, ∆0+3𝑉40 = −0.0087, ∆0+4𝑉40 = 0.1628, ∆0+5𝑉40 =

−0.788            (11) 

After carrying out the procedure described above for each row in table 1, we have 

∆1+0𝑉00 = 0.59, ∆2+0𝑉00 = −0.23, ∆3+0𝑉00 = −0.13, ∆4+0𝑉00 = 0.13, ∆5+0𝑉00 = 0  (12) 

∆1+0𝑉01 = 0.475, ∆2+0𝑉01 = −0.18, ∆3+0𝑉01 = −0.115, ∆4+0𝑉01 = 0.115, ∆5+0𝑉01 = 0 (13) 

∆1+0𝑉02 = 0.385, ∆2+0𝑉02 = −0.1475, ∆3+0𝑉02 = −0.09, ∆4+0𝑉02 = 0.09, ∆5+0𝑉02 = 0 (14) 

∆1+0𝑉03 = 0.3113, ∆2+0𝑉03 = −0.1186, ∆3+0𝑉03 = −0.0741, ∆4+0𝑉03 = 0.0741, ∆5+0𝑉03 = 0  

            (15) 

∆1+0𝑉04 = 0.408, ∆2+0𝑉04 = −0.564, ∆3+0𝑉04 = 0.72, ∆4+0𝑉04 = −0.72, ∆5+0𝑉04 = 0  (16) 

∆1+0𝑉05 = 0.204, ∆2+0𝑉05 = −0.078, ∆3+0𝑉05 = −0.048, ∆4+0𝑉05 = 0.048, ∆5+0𝑉05 = 0  

(17) 
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The formula for determining the differences between two orders can be expressed generally 

as 

∆𝑚+𝑛𝑉00 = ∆𝑚+0𝑉0𝑛 − 𝑛∆𝑚+0𝑉0𝑛−1 +
𝑛(𝑛−1)

2!
∆𝑚+0𝑉0𝑛−2 − ⋯ + (−1)𝑚∆𝑚+0𝑉00  (18) 

∆𝑛+𝑚𝑉00 = ∆0+𝑛𝑉𝑚0 − 𝑚∆0+𝑛𝑉𝑚−10 +
𝑚(𝑚−1)

2!
∆0+𝑛𝑉𝑚−20 − ⋯ + (−1)𝑚∆0+𝑛𝑉00  (19) 

∆1+1𝑉00 = ∆1+0𝑉01 − ∆1+0𝑉00 = 0.475 − 0.59 =  −0.1150      (20) 

∆1+2𝑉00 = ∆1+0𝑉02 − 2∆1+0𝑉01 + ∆1+0𝑉00 = 0.385 − 2 × 0.475 + 0.59 = 0.0250  (21) 

∆2+1𝑉00 = ∆2+0𝑉01 − ∆2+0𝑉00 = −0.18 − (−0.23) = −0.1150     (22) 

∆3+1𝑉00 = ∆3+0𝑉01 − ∆3+0𝑉00 = −0.115 − (−0.13) =  0.0150     (23) 

∆1+3𝑉00 = ∆1+0𝑉03 − 3∆1+0𝑉02 + 3∆1+0𝑉01 − ∆1+0𝑉00 = 0.3113 − 3 ×  0.385 + 3 × 0.475 −

0.59 =    −0.0087           (24) 

∆2+2𝑉00 = ∆2+0𝑉02 − 2∆2+0𝑉01 + ∆2+0𝑉00 = −0.1475 − 2 × (−0.18) + (−0.23) =  −0.0175  

∆1+4𝑉00 = ∆1+0𝑉04 − 4∆1+0𝑉03 + 6∆1+0𝑉02 − 4∆1+0𝑉01 + ∆1+0𝑉00    (25) 

              = 0.408 − 4 × 0.3113 + 6 × 0.385 − 4 × 0.475 + 0.59 = 0.1628  

∆4+1𝑉00 = ∆4+0𝑉01 − ∆4+0𝑉00 = 0.115 − 0.13 =    −0.0150     (26) 

∆3+2𝑉00 = ∆3+0𝑉02 − 2∆3+0𝑉01 + ∆3+0𝑉00 = −0.09 − 2 × (−0.115) + (−0.13) = 0.0100  

            (27) 

∆2+3𝑉00 = ∆2+0𝑉03 − 3∆2+0𝑉02 + 3∆2+0𝑉01 − ∆2+0𝑉00  

              = −0.1186 − 3 × (−0.1475) + 3 × (−0.18) − (−0.23) =   0.0139   (28) 

Interpolating polynomials in two variables up to the difference of the fifth degree requires 

the following formula: 

𝑉(𝑥, 𝑡) =  

𝑉00 + [
(𝑥−𝑥0)

ℎ
∆1+0𝑉00 +

(𝑡−𝑡0)

𝑘
∆0+1𝑉00]  

+
1

2!
[

(𝑥−𝑥0)(𝑥−𝑥1)

ℎ2
∆2+0𝑉00 +

2(𝑥−𝑥0)(𝑡−𝑡0)

ℎ𝑘
𝑉00 +

(𝑡−𝑡0)(𝑡−𝑡1)

𝑘2
∆0+2𝑉00]  

+
1

3!
[

(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)

ℎ3 ∆3+0𝑉00 +
3(𝑥−𝑥0)(𝑥−𝑥1)(𝑡−𝑡0)

ℎ2𝑘
∆2+1𝑉00 +

3(𝑥−𝑥0)(𝑡−𝑡0)(𝑡−𝑡1)

ℎ𝑘2 ∆1+2𝑉00 +

(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)

𝑘3 ∆0+3𝑉00]  
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+
1

4!
[

(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)

ℎ4 ∆4+0𝑉00 +
4(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)(𝑡−𝑡0)

ℎ3𝑘
∆3+1𝑉00 +

6(𝑥−𝑥0)(𝑥−𝑥1)(𝑡−𝑡0)(𝑡−𝑡1)

ℎ2𝑘2
∆2+2𝑉00 +

4(𝑥−𝑥0)(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)

ℎ𝑘3
∆1+3𝑉00 +

(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)(𝑡−𝑡3)

𝑘4 ∆0+4𝑉00]  

+
1

5!
[

(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)(𝑥−𝑥4)

ℎ5 ∆5+0𝑉00 +
5(𝑥−𝑥0)(𝑥−𝑥1)(𝑥−𝑥2)(𝑥−𝑥3)(𝑡−𝑡0)

ℎ4𝑘
∆4+1𝑉00 +

10(𝑥−𝑥0)(𝑥−𝑥1)((𝑥−𝑥2)(𝑡−𝑡0)(𝑡−𝑡1)

ℎ3𝑘2 ∆3+2𝑉00 +
10(𝑥−𝑥0)(𝑥−𝑥1)(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)

ℎ2𝑘3 ∆2+3𝑉00 +

5(𝑥−𝑥0)(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)(𝑡−𝑡3)

ℎ𝑘4
∆1+4𝑉00 +

(𝑡−𝑡0)(𝑡−𝑡1)(𝑡−𝑡2)(𝑡−𝑡3)(𝑡−𝑡4)

𝑘5
∆0+5𝑉00]   (29) 

After changing the values of the various operators in equation (29) and simplifying the 

equation, we get the following: 

𝑉(𝑥, 𝑡) = 2.95𝑥 − 2.875𝑥(𝑥 − 𝑡 − 0.22) − 𝑥[2.7083(𝑥 − 0.2)(𝑥 − 0.4) + 71.875𝑡(𝑥 −

0.2) − 156.25𝑡(𝑡 − 0.02)] + [3.3854𝑥(𝑥 − 0.2)(𝑥 − 0.4)(𝑥 − 0.6) + 15.6250𝑥𝑡(𝑥 −

0.2)(𝑥 − 0.4) −  273.4375𝑥(𝑥 − 0.2)(𝑡 − 0)(𝑡 − 0.02) −   906.2500𝑥𝑡(𝑡 − 0.02)(𝑡 −

0.04)] − [19.5312xt(x − 0.2)(x − 0.4)(x − 0.6) −  260.4167xt(x − 0.2)(x − 0.4)(t −

0.02) − 3619.8xt(x − 0.2)(t − 0.02)(t − 0.04) − 211980x(t − 0.02)(t − 0.04)(t − 0.06)]  

     (30) 

3. Graphical Solution: 

 

Graph-1: The space-time graph of numerical solutions of heat conduction equation by double 

interpolation method for m = 25 
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Graph-2: The space-time graph of analytic solution of heat conduction equation  

 

Graph-3: Numerical solution of Heat equation in different values of  t 

5. Closing Comments:  In this research, a mathematical strategy known as the double 

interpolation method methodology is presented. This technique is used to approximate 

mathematical arrangements of important one-layered heat conditions. In the method that 

has been proposed, there are currently just a few lattices that focus on ensuring the 

necessary precision. Because the limit conditions are taken into consideration in a natural 

way, the technique is quite useful for addressing limit esteem difficulties. The proposed 

method is also quite easy to put into action, and the mathematical results demonstrate that 
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it is highly successful for the mathematical arrangement of the cited problem. Additionally, 

the method may be applied to other circumstances involving fractional differentials. 
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