

Ilkogretim Online - Elementary Education Online, Year; Vol 20 (Issue 5): pp. 431-442
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2021.05.45

431| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Performance Enhancement of Valid-time Query Retrieval through
Application of Access Method

Shailender Kumar, Department of Computer Science and Engineering, Delhi Technological University, Delhi, shailen-
derkumar@dce.ac.in
Pankaj Lathar, P.G. Dept of Computer Science and Applications, Bhai Parmanand Institute of Business Studies, Delhi,
pankajlathar@gmail.com

Abstract- Valid-time database depicts a certain error-free effigy of database which besteads agile delegation of the set
of interval objects that may be historical or condign to the current environment and even pertinent for the future
aspects that can be ameliorated randomly at any point in valid time domain. As data is emerging endlessly with time
in a vast magnitude so to retrieve it efficiently is a key idea of research. The access method is exigent for time-varying
databases than conventional one due to their timely and eternally growing traits. In this paper, we have implemented
data model and wielded the binary-tree approach to implement query retrieval acquisition of time-oriented database,
which sustains the preferential scenario as collated to the extant approach supported by database environment. We
also adumbrated the various proposed access approaches that support dynamic interval management. In the end of
the paper, we have summarized them based on the time and capacity requirement.

Keywords: Valid-time interval, temporal database, indexing.

I. INTRODUCTION

In database applications, intricacy of information is accruing perpetually and handling time-varying na-
ture of data is a crucial aspect. In recent times, the size of the databases keep continuously growing in the
competition-oriented industry and to cope up with this endlessly evolving scenario an effective access
approach is vital to support the time-varying query retrieval dextrously and swiftly with minimum space
exploitation. The traditional database maintains the only current state of an entity or objects i.e. whenever
place mutation happens, the past state is overwritten with the new one. In these database applications,
transaction history is maintained in the forms of logs (i.e., Backups, checkpoints) which are severe and
costly to bring about. Time-varying databases should accompany facts or data with time which represents
the more accurate perspective of a database that is expedient for analysing and monitoring information.
Time may be represented by either time instants or durations by associating with the facts or events to
represent information more precisely. Transaction time (or machine time) database also called as rollback
databases [1][2] stores historical as well as the current state of aeon objects that pullulate in accruing
order. Machine time refers to the time at which facts are registered in the database and evolves in an ap-
pend-only manner, also called machine activity. Once the record is entered into the system, the amend-
ment to the data is not possible and commutation of data is done logically without affecting the previous
state physically. These traits help in maintaining the complete history by recording the changing state of
objects and can be used in numerous applications such as auditing and monitoring.
Valid time refers to the time at which actual facts or events occurred in the real-world and that represents
the clearer and legitimate perspective of data (also called as historical database as defined in ([1][3]). The
indicated database stores the actual time-varying aspect of the database, as it reflects the real-world his-
tory instead of database history. It renders the agile establishment of epoch-objects and stores the rigor-
ous image of database which maintains preceding, current as well as succeeding time of data. In numerous
applications, it can be adopted such as banking, project planning, and weather forecasting. In Fig.1 we
have attempted to represent the concepts for both valid and machine time intervals management and
sustain how they differ from each other with the help of an example. The interval <vs, ve> denotes time
duration in which vs represents beginning time and ve represents ending time for a valid-time object and
similarly, the interval <ts, te> denotes time duration in which ts represents begin time and te represents
end time for a machine-time object.

mailto:shailenderkumar@dce.ac.in
mailto:shailenderkumar@dce.ac.in

432| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Fig.1. Changes in the State of interval object with previous state represented in (1.1) and after modification in intervals is
shown in (1.2).

The <vs1, ve1> , denotes time duration for valid-time object1 and <vs2, ve2> represents the time duration
for object 2 and in similar way the machine time objects are interpreted. In machine time databases, time
pullulates in perpetually increasing order without affecting the previous state of an object in reality but in
valid-time databases, time-durations can be commutated from any point in intervals domain which does
not follow any specific order. That means intervals can be modified or deleted randomly whenever er-
rors/changes happened. In Fig. 1 the agile nature of valid-time intervals have been illustrated, which de-
scribes the changes in the states of the objects collection. The combination of both machine time and valid-
time is recorded in Bi-temporal databases. Bi-temporal databases depict the more realistic representation
for time-varying information because the information is represented by machine time along with the ab-
solute incidence time[4].
As data is emerging endlessly with time in a vast magnitude so to retrieve them efficiently is a key idea of
research. An approach for retrieving and managing the huge amount of time-varying data is a vital obliga-
tion. Dynamic management of time-durations is difficult because changes occur in an unordered manner
and effective access method is essential for fast retrieval of queries with effective utilization of space[5]. In
this paper, we have implemented the temporal data model and utilized the binary-tree approach on tem-
poral attributes to optimize the query retrieval process and analysed the performance of the valid-time
database by applying indexing on it with existing database query approach and the results are encourag-
ing. There is a significant reduction in the time required to answer the time-varying query problem. We
also adumbrate the various access approaches that support the agile set of valid-time duration manage-
ment proposed in previous works of literature. We have also summarised the time and capacity required

433| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

for various indexing approaches. The previous work section presents the details about related work in
previous literature. Preliminaries section provides the concept and various parameters needed to evaluate
the access method cost. Access structure section presents a different categorization of access structures.
In the results segment, the enhancement of time-varying query retrieval is presented. Finally, in the last
section, the conclusion and future work is summarized.

II. PREVIOUS WORK

A variety of approaches has been introduced in previous works of literature for indexing valid-time inter-
vals. The popular R-trees in [6], is the height-balanced search tree mainly introduced for spatial indexing
and was further utilized for valid-time indexing in which aeons were represented into a one-dimensional
range search problem. Time Index in [7] has been accustomed for indexing valid-time durations using B+
tree with the assumption that time pullulates in increasing order and changes to data happen rarely. The
problem with this method was the requirement of more space which takes Oc2 time, where c is a number
of interval object collections. Kolovson & Stonebraker in [8][7] proposed another access approach Seg-
ment R Tree, which combines Segment-Tree with R-Tree to reduce the overlapping problem among nodes
as resulted in R-trees. In [9] Meta block tree has been introduced which divides the area above the diago-
nal in two-dimensional planes into the number of metablocks. It is semi-dynamic in nature and supports
the only insertion efficiently. The author in [10] has proposed a new technique called as Path caching
which externalizes the existing data structure by augmenting the various main memory access frame-
works such as interval tree, priority search tree, and other.
Time index+ in [11] has been proposed to triumph the space and update requirement issue in time-index
but still, it does not deal with it efficiently. External Interval tree method in [12]contends I/O optimal solu-
tion for one-dimensional interval query. Ramaswamy in [13] introduced a window-based method to solve
the point-based query. MAP21 in [14] maps the valid-time intervals into a single point and indexes them
using regular b-tree. Relational Interval (RI) tree access structure rendered by [15] has been implemented
on the top of the relational storage system and can be integrated with Relational database management
system (RDBMS) as well as with Object RDBMS. The RI-tree was further extended by [16]in which the
basic interval-relationship based query has been represented. The authors in [17] were introduced Trian-
gular Decomposition method, the indexing approach for the temporal database that evolves in an append-
only manner.

A compilation on similar concepts has been stated where evaluation on temporal constraints for migration
of legacy applications is being done from non-temporal data systems to the temporal environ-
ment[30][31]. For a successful migration, Temporal compatibility should be kept in check. The Temporal
compatibility contains the aspects and features of temporal languages that are mapped in accordance with
the nontemporal languages that they change. This ensures smooth conversion and migration of legacy
applications that have a non-temporal touch[32].

Mate, S. et al[33]provided with the graphical model to implement temporal queries. Stating the example of
retrieving of patient cohorts in electronic patient data, which often demands the definition of temporal
constraints between the selection criteria. They argued that form-based methodology may be limited
when modelling such constraints beyond a certain degree of temporal complexity. Based on Allen's time
interval algebra, a time query can be modelled by placing a simple horizontal bar that represents a sym-
bolic time interval. They have also applied two extensions to allow the application to handle the complex
time models. Periodic intervals allow inferences about the relative time distance between patient events
and time interval modifiers. It supports counting and excluding patient events as well as constraining nu-
merical value. They also demonstrated the formation of a database query from this notation and also pro-
vided a typical implementation consisting of a temporary front end for query modelling and an experi-
mental back end that connects to an i2b2 system. These modelling techniques are evaluated in the MIMIC-
III database and proven that they can be used to model typical temporal phenotypic queries.

Anselma, L et al.[34] showed that Temporal information has a vital role in medicine. The relational ap-
proaches in the present scenario have certain drawbacks in treating “now-relative” data (i.e., sticking at
the present moment). The proposed methodology handles now-relative relational data which can be
paired with different decision support systems. They proposed a new data model and temporal algebra to
support Allen's possible necessary temporal relationships. The case study was also done to measure the
impact of their methodology and its theoretical and computational properties.

434| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Eleftheriou et al.[35] addressed one of the biggest challenges of Managers from complex organisations,
which is to choose whether it is worthwhile to migrate an application and data to new software or not.
These choices are difficult for a massive organization. not only costs but risks are underseen. In this paper,
they proposed a new method aiming to predict the locations of high cost and risk when existing non-
temporal data needs to move to new temporal development. This new low-cost method, which uses inex-
pensive social and technical information to achieve a lightweight model called the Data Path Model that
sets the path of datasets from their original location in the knowledge infrastructure to the new one. via a
complex network, People and organizations.

Kvet, M. At el.[36] proposed a new methodology of effective data retrieval by identifying effective data
block location even if no suitable index for the query is available in the system, learning to optimized per-
formance of the entire system in terms of processing time and costs. They introduced the concept of the
master index, which projects only the relevant blocks due to which there is no need for sequential block
scanning which leads resources conservation and can have a significant impact on sensor oriented data, as
well.

III. PRELIMINARIES

Real-time applications in database management system are quite large in size to fit in main memory, so
external memory is vital to handle these and also needed for efficient exploitation of space and I/O (In-
put/output) activities. As data relocate from external storage disc to internal storage RAM (Random Ac-
cess Memory) in the form of segments (or blocks), so the I/O time is the time elapsed while transferring
one segment from disc to main memory and it is considered as one I/O, a concept used in [18]. The ac-
complishment of rendered approaches is evaluated on the basis of requisite capacity to store the data
structure and time required to answer the time-varying query. Traditional databases were small in size so
data structure was developed specifically to internal memory as they are not adequate for secondary stor-
age database. Due to the growing size of data, the secondary memory data structure is proposed which
have more capacity than the main memory and can be further optimized in the context of the query and
space-time complexity.
The suitable features of access frameworks are Index pagination- It represents the relocation of the num-
ber of segments per change from disk to main memory and vice versa. And Query Clumping- refers to the
bunching of the data segments based on the retrieval of answered problems/queries that are rationally
(or closely) similar which meliorate the query implementation time faster. Clumping is very difficult to
maintain in valid-time durations as changes happen frequently in the object collections which can be up-
dated at any point in their expertise and as a result, it requires frequent restructuring of clump objects
that is not an efficient way.
The touchstones used in this paper are: c represents the number of interval-objects in the collection, s is
the size of the time-varying query to be accessed, and p is the block (or segment) size which consists of the
number of records registered per segment. The approaches should be estimated in the context of job loads
that can be considered as a set of segments.

3.1 Internal Memory Access Structures

Access approaches can be classified based on their access framework.
Internal Storage access Framework (ISF)-The most popular approaches in ([19], [20] and [21]) defined
are Segment tree (ST), Interval tree (IT), Priority search tree (PST).

Segment tree is a primary storage access framework to register end-points of time duration in a non-
internal node of B-tree.

Interval Tree uses the concept of augmented self-balanced binary search tree like red/black tree, AVL tree
and renders the intervals into the number of range queries.

The priority search tree is a combination of a balanced binary search tree (BST) and heap (or priority
queue). It has been utilised to register the intervals into a two-dimensional point (x, y) and answers semi-
infinite range queries.

The above structures support the one-dimensional range query (or stabbing query) which takes
Olog2c+squery time and O(log2c)update time for maintaining the index structure. Interval tree and prior-

435| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

ity search tree occupies linear space that is O(c) and segment tree required O(clog2c)space. PST can an-
swer more severe problem which can be more than one magnitude in range. The time and capacity esti-
mated can be summarised in Table 1.

Table 1.Represents internal storage access approaches.

Method Space Update time Query time

PST 𝑂 𝑐 𝑂 𝑙𝑜𝑔2𝑐 𝑂 𝑙𝑜𝑔2𝑐 + 𝑠

ST 𝑂 𝑐𝑙𝑜𝑔2𝑐 𝑂 𝑙𝑜𝑔2𝑐 𝑂 𝑙𝑜𝑔2𝑐 + 𝑠

IT 𝑂 𝑐 𝑂 𝑙𝑜𝑔2𝑐 𝑂 𝑙𝑜𝑔2𝑐 + 𝑠

The time and space utilized by internal memory data structures can further be optimized by extending
them in the external storage structure. Space can be meliorated from O(c) to O(c/p), query time can be
reduced up to O(logpc+s/p) and update time to maintain data framework optimized by Ologpc time. This
represents the secondary storage lower bound for one-dimensional range query which is the worst-case
behaviour for the introduced approach; it is hard to estimate average-case behaviour for the access struc-
tures. In Fig. 2 the result depicts the internal storage structures that can be further optimized by adopting
the external storage structure on disk with an accruing size of segments in terms of numbers of records
occupied. Since the value of p increases, the query time (QT) and updates time (UT) has been meliorated.

Fig.2. Comparison of the query and update time in ISF and ESF

External Storage Access Framework (ESF)-In previous research numerous of data structure has been
proposed for valid-time durations which extend the primary structure. Salzberg and Tsotras present the
comprehensive study of numerous access methods which were developed for efficient query retrieval in
temporal databases such as valid time, machine time and Bi-temporal database but primarily focused on
machine time access structure and provided the detailed analysis of time and space complexity for time-
evolving nature of data. Some of them are external segment R-tree [12], path caching, Meta block tree,
external memory interval tree, binary blocked interval tree, and time-polygon index [22]. These methods
aggrandized the existing internal storage access structure and attempted to render the more optimized
approaches for the vast volume of complex time-varying database applications by utilising external stor-
age framework. These frameworks are utilized for improving the performance in terms of answering one-
dimensional interval queries and for the time required for restructuring the data structure while single
update takes place in the database. The indexing approaches require extra capacity (or disk overhead) on
disk along with database itself to meliorate the query performance, so the secondary access structures are
more suitable for large datasets.

0 5 10 15 20 25 30

QT(p=2)

QT(p=4)

QT(p=8)

UT(p=2)

UT(p=4)

UT(p=8)

ESF

ISF

436| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

3.2 External Memory Access approaches

As valid-time access approaches require maintenance of the time-duration of events which are mercurial
in nature. Consequently, traditional R-tree has been used to index valid-time durations in which data has
been partitioned into the rectangular area which minimizes the overlapping and coverage of set of rectan-
gles corresponding to leaves and internal nodes. Multidimensional R-tree method supports more complex
queries than one-dimensional range-based query. In the R-tree approach, records which are rationally
closed can be clumped based on the length of a set of epoch objects. Due to the mixture of short and large
time-durations, it reflects the problems of overlapping which affects the query and update performance.
Kolovson and Stonebraker introduced another variation named as Segment R tree (SR tree) which com-
bines the R-tree with internal storage access structure and segment tree to store line segment. This
method translates the time-durations into single point in two-dimensional spaces and Point Access
Method was adopted to index them. For example, suppose u and v are the two time dimensions denoting
start time point in u direction and end time point in v direction and the interval I=(u1,v1) is represented
in two dimensional planes.

Fig. 3. Transformation of valid-time duration into a single point <𝒖𝟏, 𝒗𝟏>.

The interval I consists of point p iff it satisfies the condition u≤p≤v. Fig. 3 shows the mapping of interval
into a point <u1,v1> in two dimensional spaces. The query p lies in the box [0,p] and [p,∞]. Since u is al-
ways less than v, denoted by the diagonal where u=v and all interval points are represented in the region
which are above the diagonal. This kind of mapping is also supported in PST which externalize in [9]. The
access framework for indexing coercions and indexing classes were introduced for the concept of coercion
programming and object-oriented programming. The constraint query language (CQL) is merged with
two-dimensional time duration search which retrenched the indexing coercion into maintenance of active
duration on external storage problem (special case of two-dimensional range search). The time durations
were represented as indexing checks and objects which consist of forest of class hierarchy and a new ex-
ternal storage access framework called Metablock-Tree was introduced to solve the diagonal-query prob-
lem. The introduced access structure was semi-dynamic in nature which splited the area above the diago-
nal into blocks/segment and assigned the records to them horizontally and vertically. The method sup-
ports insertion and retrieval operations but not the commutation of time-duration events.
Path caching technique has been introduced by [10] in which various internal storage access approaches
such as PST, and ST has been augmented into secondary storage access framework to provide the solution
for special cases of two dimensional range retrieval query and attempted to provide optimized or nearly-
optimized query performance with some extra space overhead as compared to primary access ap-
proaches. External segment-tree [12] extends the segment tree primary memory access structure at-
tempting to provide a solution for point-enclosure problem (also called cover-equilibrating problem). Let
v be a universal set, consists of all possible endpoint duration which represents valid-time interval then
the time required to answer the stabbing queries search problem is O(log2v+s), and update per changes
requires Olog2v time with requirement of O((c/p)log2v) space. EST is augmented to solve the query prob-
lem with key predicate by engrafting b-tree data structure.
Arge and Vitter in [23] rendered a new approach called External Interval-Tree which externalizes the
primary storage Interval tree data structure proposed by Edelsbrunner which contended an I/O optimal
solution for the problem of mercurial maintenance of time duration object and overcomes the limitation in
the previous approaches such as meta-block tree, and path caching. Basically, it utilized two secondary
access structures: binary tree (or b-tree) and the corner framework and provides the solution for one-
dimensional stabbing queries. The main concept was to replace the fan-out from 2 to p , where p is the size

437| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

of segment/page, which was beneficial for successfully externalization of the internal storage access struc-
ture into secondary storage structure. The time durations were divided into p sub-durations and these
durations were called as slabs that can be effectuated using binary tree and corner framework. Interval B-
tree of Ang & Tan [24] externalizes the interval tree primary structure to resolve the problem recognized
in time-index method.
Bozkaya and Ozsoyoglu in [25] developed an approach, Interval B+-tree to overcome the limitation of time
index method in which interval tree structure was transformed into secondary access structure for in-
creasing time-varying query efficiency. It defines lower endpoint of intervals acting as a key and queries
which consist of upper endpoints were not considered. It was developed for valid-time dimensions in
which the concept of now (current-time data) and related to future (that tends to infinite) were also con-
sidered and the main focus was to answer the pure time-slice queries. The method was suitable for the
retrieval of long time-duration because it splits the leaves data into parts which improves the query per-
formance by preventing large fruitless scans with the help of some extra space consumption.
Nascimento and Dunham introduced an approach MAP21 (expand as map two one) which maps valid-
time bounded periods of historical databases into single point and indexed these points using B+- tree. It
requires that time-duration endpoints should be known in advance for mapping i.e. the database should
be stable and does not have to change frequently. The approach was developed for answering the range-
based queries efficiently and also to ensure effective space exploitation as compared to Time-Indexed
method. Let the interval be I=(b,e) where b and e denotes the beginning and end time instants and d is the
maximum number of digits to represent the time-duration endpoints then mapping can be done by using
function

𝐹 𝑏, 𝑒 = 𝑏 ∗ 10𝑑 + 𝑒

The above function maps the time-durations into single point representation and inverse of function is
also specified to get back the actual values of the time-durations. This approach is static in nature and
does not support the dynamic interval management problem efficiently. Relational Interval tree is pro-
posed to exploit the existing relational storage access structure which uses the original interval-tree and is
implemented on existing relational database management system (RDBMS). According to author, an ac-
cess method can be created by augmenting existing one or by creating a new approach from scratch but
the integration of these structures were hardly supported by existing RDBMS. So a new approach has been
proposed which was effectuated on existing database using in-built access framework and can be easily
integrated with existing RDBMS and ORDBMS (Object RDBMS). The approach was developed for answer-
ing the intersection based queries in which two relational-indexes were created for starting and ending
point in time duration. The time required for resolving the query was O(hlogpc+s/p), where h is the height
of primary virtual framework.
The triangular decomposition tree (TD tree) is another access approach which leverages the existing in-
built relational approach for managing time-varying objects using virtual index framework and space-
division method. Virtual index depends on the delegation of time-durations in two dimensional planes
which transform the query problem into spatial representation. The method divides the basic triangular
region into sub-triangles and represents them in the leaves of resultant unbalanced binary tree where
actually data is stored. Main idea was proposed to answer the multitudinous time-varying query forms
such as point queries, intersection based queries and time-duration association queries using the same
algorithm. The time-slice or point-based queries were solved in O(m/p+logpc+s/p), where d represents
the size of directory-table which consists of the details such as identifiers and number of records per leaf,
about all leaves in a tree.
 Finally, in table 2 we have summarized the various access approaches proposed for valid time-durations
along with the time and capacity requisite based on the parameters that are defined above in preliminar-
ies section.

Table 2.Performance features of valid-time interval access approaches.

Method Space Update time Query time

Time Index 𝑂 𝑐2 𝑝 𝑂 𝑐 𝑝 𝑂 𝑙𝑜𝑔𝑝𝑐 + 𝑠 𝑝

Segment R-Tree 𝑂 𝑐 𝑝 𝑙𝑜𝑔𝑝𝑐 𝑂 𝑐 𝑝 𝑂 𝑐 𝑝

Metablock Tree 𝑂 𝑐 𝑝 𝑂 𝑙𝑜𝑔𝑝𝑐

+ 𝑙𝑜𝑔𝑝𝑐
2

𝑝

𝑂 𝑙𝑜𝑔𝑝𝑐 + 𝑠 𝑝

438| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Path Caching 𝑂 𝑐 𝑝 𝑙𝑜𝑔2𝑙𝑜𝑔2𝑝 𝑂 𝑙𝑜𝑔𝑝𝑐 𝑂 𝑙𝑜𝑔𝑝𝑐 + 𝑠 𝑝

External Segment
trees

𝑂 𝑐 𝑝 𝑙𝑜𝑔2𝑣 𝑂 𝑙𝑜𝑔2𝑣 𝑂 𝑙𝑜𝑔2𝑣 + 𝑠

External Interval
Tree

𝑂 𝑐 𝑝 𝑂 𝑙𝑜𝑔𝑝𝑐 𝑂 𝑙𝑜𝑔𝑝𝑐 + 𝑠 𝑝

MAP 21 𝑂 𝑐 𝑂 𝑙𝑜𝑔2𝑐 𝑂 𝑙𝑜𝑔2𝑐 + 𝑠

RI Tree 𝑂 𝑐 𝑝 𝑂 𝑙𝑜𝑔𝑝𝑐 𝑂 ℎ𝑙𝑜𝑔𝑝𝑐 + 𝑠 𝑝

TD-tree 𝑂 𝑐 𝑝 - 𝑂 𝑚 𝑝 + 𝑙𝑜𝑔𝑝𝑐

+ 𝑠 𝑝

3.3 Temporal Model Used

Time-oriented system can be implemented either by creating a new system from scratch or by augment-
ing the existing structure from the conventional database management system (DBMS). Developing a new
system is more costly and time consuming as it requires too much time and manpower and incompetent
environment new system deployment becomes quite challenging task. In another approach, the existing
system is not affected and the implemented data-model can be easily integrated with commercial data-
base application. We have implemented valid-time database using second approach in which row-based
timestamping model is used and data is represented in first-normal form (1NF) as in [26].The schema
adopted for representing valid time relation RVTis a collection of time-varying and non-time varying at-
tributes is defined as

RVT=<C1, C2,..,CN|VS,VE>, here VS<VE

It consists of non-temporal finite set of attributes C1, C2,..,CN which encode the states of an event and
temporal attributes VS,VE represent valid-time durations for that where VS is start time and VE is end time
for the interval object. The relation RVT represents the row-based timestamping model which is utilized
for performing experiment and optimizing the query results. The schema is defined using PostgreSQL
environment and consists of the following fields given as.

Loan_id Coun-
try

Loan_stat
us

Inter-
est_rate

Pro-
ject

Amount Start_dat
e

End_dat
e

The schema that is used for evaluation of our approach consists of the following attributes:
Key Identifier - A unique constraint is assigned to the relation. In our relation 𝑅𝑉𝑇 loan_id and start_date as
a composite field represents the key constraint.
Field – It comprises of time-varying or non-temporal attributes.
Start time – It is the left part of the time duration in a time range that is start_date.
End time - The right part of the time duration in a time range that is end_date.

3.4 Algorithm

Binary tree (B-tree) is a self-equi poised multiple-way search tree which unlike other search trees (like
AVL search tree, Binary search tree, and red/black tree) must have the property of storing more than two
children in every node and searching can be possible in dissonant ways depending on the number of chil-
dren it points. It stores keys in ordered manner corresponding to the leaves of the tree and the leaf nodes
are linked with each other which support range queries efficiently in logarithmic time as compared to
sequential method. We have exploited Binary tree approach for valid-time duration to meliorate the time
varying query retrieval process. The access method is applied on defined relation 𝑅𝑉𝑇which optimizes the
retrieval time for larger dataset.

3.5 Query Problem

The main focus is on to answer the time-varying queries using temporal operators. The problem state-
ment that should be answered in efficient way can be defined by the following scenario. Suppose a univer-
sal set 𝑈𝑠 comprises of a set of valid-time intervals which can be represented as:

𝑈𝑠 = 𝑉𝑆𝑖 , 𝑉𝐸𝑖 , 𝑤ℎ𝑒𝑟𝑒𝑆𝑖 < 𝐸𝑖 ∧ 1 ≤ 𝑖 ≤ 𝑐>

439| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Here 𝑉𝑆𝑖 represents the valid start time and 𝑉𝐸𝑖represents valid end time for an interval object and the

interval 𝑄 = <𝑞1 , 𝑞2> should be searched in interval collection which intersects the intervals in the set𝑈𝑠 .
This problem is called as one dimensional time duration management problem. If a single instant 𝑞1 is
queried in set of valid time interval collection then it is said to be the stabbing query problem as defined in
[27][29]. These are the most frequently used problems which are defined and solved by various access
structure approaches.

IV. PERFORMANCE EVALUATION

The experiments are actualised on the well established hardware such as 4 GB RAM and Intel(R) Pen-
tium(R) CPU N3700 @ 1.60GHz. PostgreSQL is an open- source database server which is used for deploy-
ment of database application and psql/pgAdmin for querying the time-varying data. The machine was
kept in the state of isolation while empirical evaluation of temporal queries retrieval process was accom-
plished.

4.1 Dataset

We have compared and analysed our indexing approach with the existing method using real-time banking
application scenario. The database handles the valid-time data i.e. past records, records suitable for the
current state and even the future aspects dynamically which means that it can be altered randomly with-
out following any order. The evaluation of both approaches is done by partitioning the data set into sub-
sets in increasing size of records which reflects the performance boost when compared to the existing
approach after applying indexing. The database comprises of a large number of fields as represented in
preliminaries section to store the records for bank loan management system and reflects the legal time
that is historical, current and related to future also.

4.2 Results

A performance evaluation of access method approach with respect to existing sequential method is per-
formed over row based timestamping model. Experiments are performed over multiple or large number
of fields. Our goal is to test both the approaches under different conditions. Performance of indexing ap-
proach and existing sequential method is evaluated on the basis two parameters: query retrieval time (in
milliseconds) and number of records accessed that is the size of answered query. The following results
show the Performance comparison of existing method with our approach that is using B-Tree and it is
evident that our approach requires less access time. The performance improves when the query size in-
creases. In Fig. 4, Fig. 5, and Fig. 6, results are evaluated with respect to the temporal query predicates
which are specified using ‘greater than’ or ‘less than’ or ‘equal to’ operators on temporal attribute. Below
the Fig. 4 depicts the result for query predicate that is greater than the single time instant.

Fig.4. Greater than operator query result for indexing vs. sequential method.

5686 7668
2174

0
3851

9
6370

0

Seq scan 6.17 11.84 30.17 41.19 55.62

Index scan 4.68 5.48 14.66 33.36 37.49

0

10

20

30

40

50

60

T
im

e
in

 m
s

Number of Records accessed

Query using operator '>'

Seq scan

Index scan

440| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Below the Fig. 5 depicts the result for query predicate that is greater than the time instant.

Fig.5. Less than operator query result for indexing vs. sequential method.

Below the Fig. 6 shows the result for query predicate that is equal to time instant which shows a huge
difference between indexed and sequential scan.

Fig. 6: Equal operator query result for indexing vs. sequential method.

And finally in Fig. 7 results shows the performance improvement for one dimensional range queries that
are implemented using GiST (Generalized Search Tree) index structure as described in [28].

4314 12331 28250 31475 37526

Seq scan 4.3 12.59 30.17 33.61 40.66

Index scan 2 8.82 19.47 28 25.18

0

5

10

15

20

25

30

35

40

45

T
im

e
in

 m
s

Number of Records accessed

Query using operator '<'

Seq scan

Index scan

1000
0

2000
0

5000
0

7000
0

1000
00

Seq Scan 5.34 10.72 20.54 32.36 39.48

Index scan 0.09 0.1 0.14 0.1 0.12

0
5

10
15
20
25
30
35
40
45

T
im

e
in

 m
s

Number of Records accessed

Query using operator '='

Seq Scan

Index scan

441| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

Fig.7. Range query results for existing vs. indexing method

V. CONCLUSION AND FUTURE WORK

Time-varying database applications are huge in size for its ever growing traits. These databases maintain
the state of interval objects which is called as the collection of snapshot databases. Whenever changes take
place data is not overwrote but it records every state in timely fashion. The valid-time database usually
handles the dynamic nature of the objects. Managing valid-time intervals is completely different from that
of machine time intervals. An approach for retrieving and handling the huge volume for time-varying data
is a vital obligation. We have implemented the row based timestamping data model for valid-time relation
and exploited the binary balanced search tree approach which results in significant improvement in query
execution time as compared to existing method supported by database environment. In this paper, the
various access structures for dynamic collection of intervals are classified and represented with their per-
formance features in summarized form. Most of the approaches render the solution for one dimensional
range search problem but for the multidimensional range searching is still an issue and requires further
research on development of efficient access structure. Indexing, the uncertain (that is not exactly known)
data in valid time domain is also an important aspect in future research.

REFERENCES

1.Snodgrass, R. T. & Ahn, I. Temporal databases. IEEE Computer 19. 9, 35–41 (Sept. 1986).
2.Kumar, S.,& Rishi, R. Retrieval of Meteorological Data using Temporal Data Modeling. Indian Journal of

Science and Technology. 9. 10.17485/ijst/2016/v9i37/99875. (2016).
3.Kumar, S.,& Rishi, R. A New Optimized Model to Handle Temporal Data using Open Source Database.

Advances in Electrical and Computer Engineering. 17. 55-60. 10.4316/AECE.2017.02008. (2017)
4.Kumar, S.,& Jolly, A. “A Novel Study of Attribute time stamping models in Temporal Database.” Interna-

tional Journal of Advanced Research in Computer Science (2017)
5.Kumar, Shailender . Performance Evaluation of Tuple Timestamp Multiple Historical Relation Data

Model. Journal of Engineering and Applied Sciences, 13: 222-230.
DOI:10.36478/jeasci.2018.222.230URL:https://medwelljournals.com/abstract/?doi=jeasci.2018.222.

230(2018)
6.Guttman, A. R-trees: A dynamic index structure for spatial searching (Vol. 14, No. 2, pp. 47-57). ACM

(1984).
7.Elmasri, R., Wuu, G. T., & Kim, Y. J. The time index: An access structure for temporal data.

In Proceedings of the 16th International Conference on Very Large Data Bases (pp. 1-12). Morgan
Kaufmann Publishers Inc. (1990, August).

8.Kolovson, C. P., & Stonebraker, M. Segment indexes: Dynamic indexing techniques for multi-
dimensional interval data (Vol. 20, No. 2, pp. 138-147). ACM(1991).

9.Kanellakis, P. C., Ramaswamy, S., Vengroff, D. E., & Vitter, J. S. Indexing for data models with constraints
and classes. In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems (pp. 233-243). ACM(1993, August).

542 7452
1793

9
2113

7
2232

4

seq scan 6.59 15.8 36.8 42.8 54.2

index scan 3.28 12.7 29.5 33.6 30.5

0

10

20

30

40

50

60

T
im

e
in

 m
s

Range Query

seq scan

index scan

https://medwelljournals.com/abstract/?doi=jeasci.2018.222.230(2018
https://medwelljournals.com/abstract/?doi=jeasci.2018.222.230(2018
https://medwelljournals.com/abstract/?doi=jeasci.2018.222.230(2018
https://medwelljournals.com/abstract/?doi=jeasci.2018.222.230(2018

442| Shailender Kumar Performance Enhancement of Valid-time Query Retrieval
 through Application of Access Method

10.Ramaswamy, S., & Subramanian, S. Path caching (extended abstract): a technique for optimal external
searching. In Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of

database systems (pp. 25-35). ACM (1994, May).
11.Kouramajian, V., Kamel, I., Elmasri, R., & Waheed, S. The time index+: an incremental access structure

for temporal databases. In Proceedings of the third international conference on Information and
knowledge management (pp. 296-303). ACM (1994, November).

12.Blankenagel, G., & Güting, R. H. External segment trees. Algorithmica, 12(6), 498-532 (1994).
13.Ramaswamy, S. Efficient indexing for constraint and temporal databases. In International Conference

on Database Theory (pp. 419-431). Springer, Berlin, Heidelberg (1997, January).
14.Nascimento, M. A., & Dunham, M. H. Indexing valid time databases via B/sup+/-trees. IEEE Transac-

tions on Knowledge and Data Engineering, 11(6), 929-947(1999).
15.Kriegel, H. P., Pötke, M., & Seidl, T. Managing intervals efficiently in object-relational databases.

In VLDB (pp. 407-418) (2000, September).
16.Kriegel, H. P., Pötke, M., & Seidl, T. Object-relational indexing for general interval relationships.

In SSTD (pp. 522-542) (2001, July).
17.Stantic, B., Topor, R., Terry, J., & Sattar, A. Advanced indexing technique for temporal data. Computer

Science and Information Systems, (16), 679-703(2010).
18.Salzberg, B., & Tsotras, V. J. Comparison of access methods for time-evolving data. ACM Computing

Surveys (CSUR), 31(2), 158-221 (1999).
19.Bentley, J. L. Solutions to Klee’s rectangle problems. Technical report, Carnegie-Mellon Univ., Pitts-

burgh, PA (1977).
20.Edelsbrunner, H. A new approach to rectangle intersections part I. International Journal of Computer

Mathematics, 13(3-4), 209-219 (1983).
21.McCreight, E. M. Priority search trees. SIAM Journal on Computing, 14(2), 257-276 (1985).

22.Shen, H., Ooi, B. C., & Lu, H. The TP-Index: A dynamic and efficient indexing mechanism for temporal
databases. In Data Engineering, 1994. Proceedings. 10th International Conference (pp. 274-281). IEEE

(1994, February).
23.Arge, L., & Vitter, J. S. Optimal dynamic interval management in external memory. In Foundations of

Computer Science, 1996. Proceedings., 37th Annual Symposium on (pp. 560-569). IEEE (1996, Octo-
ber).

24.Ang, C. H., & Tan, K. P. The interval B-tree. Information Processing Letters, 53(2), 85-89(1995).
25.Bozkaya, T., & Ozsoyoglu, M. Indexing valid time intervals. In Database and Expert Systems Applica-

tions (pp. 541-550). Springer Berlin/Heidelberg (1998).
26.Halawani, S. M., AlBidewi, I., Ahmad, A. R., & Al-Romema, N. A.: Retrieval optimization technique for tu-

ple timestamp historical relation temporal data model. Journal of Computer Science, 8(2), 243(2012).
27.Moro, M. M., & Tsotras, V. J. Valid-Time Indexing. In Encyclopedia of Database Systems (pp. 3254-

3258). Springer US (2009).
28.Hellerstein, J. M., Naughton, J. F., & Pfeffer, A. Generalized search trees for database systems (pp. 562-

573). September (1995).
29.Böhlen, M. H. Temporal database system implementations. ACM Sigmod Record, 24(4), 53-60 (1995).
30.Revesz P. Temporal Constraints. In: Liu L., Özsu M.T. (eds) Encyclopedia of Database Systems. Sprin-

ger, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_391(2018)
31.Chomicki J., Toman D. Temporal Logic in Database Query Languages. In: Liu L., Özsu M.T. (eds) Encyc-

lopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-
9_402(2018)

32.Anselma, L., Piovesan, L., Stantic, B., & Terenziani, P. Representing and querying now-relative relational
medical data. Artificial Intelligence in Medicine, 86, 33–52.

https://doi.org/10.1016/j.artmed.2018.01.004(2018)
33.Eleftheriou, I., Embury, S. M., Moden, R., Dobinson, P., & Brass, A. Data journeys: Identifying social and

technical barriers to data movement in large, complex organisations. Journal of Biomedical Informatics
 ,78,102–122. https://doi.org/10.1016/j.jbi.2017.12.001(2018)

34.Mate, S., Bürkle, T., Kapsner, L. A., Toddenroth, D., Kampf, M. O., Sedlmayr, M., Castellanos, I., Prokosch,
H.-U., & Kraus, S. . A method for the graphical modeling of relative temporal constraints. Journal of

Biomedical Informatics, 100, 103314. https://doi.org/10.1016/j.jbi.2019.103314 (2019)
35.Eleftheriou, I., Embury, S. M., Moden, R., Dobinson, P., & Brass, A. Data journeys: Identifying social and

technical barriers to data movement in large, complex organisations. Journal of Biomedical Informatics
 ,78,102–122. https://doi.org/10.1016/j.jbi.2017.12.001(2020)

36.Kvet, M., & Matiasko, K. . Data Block and Tuple Identification Using Master Index. Sensors, 20(7), 1848.
https://doi.org/10.3390/s20071848(2020)

https://doi.org/10.1007/978-1-4614-8265-9_391
https://doi.org/10.1007/978-1-4614-8265-9_402(2018
https://doi.org/10.1007/978-1-4614-8265-9_402(2018
https://doi.org/https:/doi.org/10.1016/j.artmed.2018.01.004(2018
https://doi.org/10.1016/j.jbi.2017.12.001(2018
https://doi.org/10.1016/j.jbi.2019.103314
https://doi.org/10.1016/j.jbi.2017.12.001(2020
https://doi.org/10.1016/j.jbi.2017.12.001(2020
https://doi.org/10.3390/s20071848(2020
https://doi.org/10.3390/s20071848(2020

