

T.V.Balakrishnan Research Scholar, School of Computer Science, TNOU, Chennai, India

R Kalaiarasi Asst. Professor, School of Computer Science, TNOU, Chennai, India

ABSTRACT

ATM is one of the most pressing issues in today's banking system. The popularity of a bank will decline if an ATM has a lack of cash, and this will lead to increased costs for the bank and a decrease in customer use of ATMs. In order to ensure which neither a consumer's transaction is refused due to the ATM being out of cash, nor the bank's profit potential is squandered, each ATMs cash must be well stocked. Managing the quantity of currency in an ATM is critical to any bank's ability to serve its customers. For the most part, banks use third-party cash management firms to keep ATMs topped up on a regular basis. They're doing a study to see whether analysis of the data and Machine Learning (ML) can be used to supplement the present system's mathematical capabilities. Hence, this paper provides a survey on researches of predicting the proper amount of ATM cash replenishment to ensure that the bare minimum of cash is always present until the next refill. ATMs daily cash limit is relatively a time series phenomenon but it is has difficulty in prediction. There'll be no client unhappiness as a result of an ATM cash out issue is addressed by employing a data driven technique to estimate the proper quantity for each ATM or set of ATMs, an ATM replenishment prediction machine learning approach.

KEYWORDS: ATM cash prediction, Machine learning approaches, Time series, Cash demand prediction, Replenishment amount, Cash out.

I. INTRODUCTION

Financial Institutions, through technology Machines, help to enable consumers to access and withdraw money their account without the assistance of a bank teller or staff are known as Automated Telling Machine (ATM). As customers use the ATM for their cash needs, it is essential part of banks to keep sufficient cash available in ATMs. Automated Telling Machine (ATM) cash replenishment is a well-known concern in banking business. It is necessary to reduce the number of ATMs that are out-of-cash and the period ATMs are unavailable to customers, in order to increase customer satisfaction. Many banks now contract with cash-in-transit providers to handle the cash management associated with automated teller machines. Armoured vehicles and people are used by cash in transit (CIT) businesses to execute ATM replenishment strategies that they have determined. It is possible for clients of multiple banks to do basic financial transactions using certain

ATMs. About 2.5 times as many Automated Teller Machines were installed throughout the globe in the previous decade.. Cash replenishment optimization is a well-known issue in ATM management, and it primarily focuses on the frequency and amount of cash that should be put into an ATM during each money replenishment period. Many institutions now use cash-in-transit (CIT) providers to handle the cash from automated teller machines (ATMs). Additionally, CIT corporations employ their own resources, including armoured vans and staff, to execute cash replenishment at ATMs of on-site or off-site. Now-a-days, advanced ATMs support both cash withdrawals and cash deposits, while traditional ATMs only allow cash withdrawals. As a result of the ATM replenishment plan, which includes operational expenses and opportunity costs, as well as service levels, the number of replenishment actions and the average cash inventory in ATMs will affect both costs and service levels.

II. LITERATURE REVIEW ON ATM CASH REPLENISHMENT

In designing model for predicting the cash needs of ATMs within a network for a single financial institution, Long-Short Term Memory (LSTM) Recurrent Neural Networks (RNN) were shown to perform better for this challenge when compared to our technique. The dataset utilised for this research was made up of the transactions made at seven ATMs in Karachi, Pakistan, between June 2013 and December 2015. Using the Symmetric Mean Absolute Percentage Error (SMAPE), the results of the trials may be reported [1]. Time Series Model for ATM is based on the ARIMA approach and uses time series data (TASM4ATM). The replenishment data from 2040 ATM is used to train the software. The model is compared to Recurrent Neural Networks and Amazon's Deep AR model. Predicting ATMs may be done in two ways: a single ATM and a cluster of ATMs[2]. Predicting the ATM cash replenishment amount is one such difficulty, ensuring that the minimal quantity of cash is always present before the next replacement. There'll be no client unhappiness as a result of an ATM that is always cash filled. For this issue, the Root Mean Squared Error (RMSE) of the Long Short-Term Memory (LSTM) model is 132.53, which is positive. They expect to cluster ATMs based on transaction patterns and cash demand similarities in order to predict a cash supply. It is possible to utilise a basic model to service a large number of ATMs in this manner [3]. When considering replenishment expenses as well as stock-outs, an ideal restocking strategy aims to reduce overall money holding and customer discontent costs to a minimum. The replenishment approach takes into account the fact that future financial needs are not known at the outset of the planning process. Rather than making point forecasts, they employ prediction intervals to account for unknown future cash needs, and then apply robust optimization and linear programming to address the issue of replenishing currency. Retroactive ATM cash withdraw data is used to assess the effectiveness of various refilling strategies [4].

Predicting NN5 cash needs using support vector machines (SVMs) as the most promising machine learning approach. This study's major objective is to predict NN5 time series utilizing support vector regression, followed by calculating Root Mean Square Error. Clustering is used in ATM cash prediction pre-processing to enhance the RMSE,

according to unsupervised learning (clustering)[5]. Use of the scenario for tackling particular banking problems, such as maximising ATM demand and projecting contact centre and cash centre workload is discussed [6]. When replenishment falls on a weekend or holiday, security agencies' fees go substantially. Using the suggested technique, the operation of replenishment may be controlled in order to reduce the cost of replenishing in a dynamic cash demand situation. Using our suggested technique, they were able to lower ATM operating costs compared to the current state-of-the-art cash demand forecast systems, as shown by experiment results [7]. Minimum cost routes are established in accordance with time limitations and population coverage limits for ATMs refilled. For each of the 237,604 people who have used an ATM in the real world, they've produced a fresh set of synthetic data and evaluated it against the real-world data collected from up to 98 of those ATMs. When the Population Coverage Requirements vary, our findings for real-life cases show considerable variances in the cost of restocking ATMs in seven major Dutch cities [8].

ATMs serve as a point of contact between banks and their actual consumers. Renouncing interest is heightened when currency is kept in a tangible form. Customer satisfaction, on the other hand, need a financial reserve. A cost function for replenishment optimization is proposed in this study, which shows that daily cash withdrawals are predictable. Experiments have shown that the suggested model significantly reduces idle balance [9]. Using the planned technology, banks will be able to refill ATM currency more precisely than ever before. With this approach, banks may lower the amount of interest paid to the Central Bank by analysing the withdrawal patterns of each ATM and predicting the quantity of currency notes that need to be replaced in the ATM [10].

Customers and banks avail benefit from the increased usage of ATMs, especially in cash access from their accounts. Despite this, banks face higher ATM administration expenses. Cash replenishment optimization is a well-known issue in ATM management, and it primarily concerns how often and how much cash should be fed into an ATM during each cash replenishment period [11]. By balancing these elements, ATM replenishment optimization may be achieved. By arriving a balanced amounts of cash in ATMs, will decrease customer satisfaction as well as increase revenue to bank. To avoid an out-ofmoney issue, the needed quantity is always available and to solve the ATM cash replacement issue, there are two steps: estimating the daily amount of withdrawals, and determining the best timetable for replenishing the ATMs' cash. They presume that an accurate prediction for money withdrawals is provided in this work [12].

ATMs grouped together to handle a variety of functions are known as a cluster. Colonial-ized areas like business districts, hospitals, and so on are most prominent. The following methods for replenishing ATMs with cash are used: a) to reduce the value of fake money b) increase the likelihood of financial gain c) as a means to better satisfy clients. In order to determine the total norm volume of transactions of each ATM and construct a detachable cluster model for each group, divide the ATMs into two aggregate groups (high range transaction quantity or low range transaction amount) using

historical data spanning six-month periods [13]. For ATM cash replenishment, banks seek to save resources while still accommodating the varying needs of their customers.. The daily cash replenishment of individual ATMs was previously modelled using an exponential weighted moving average approach. As the number of variables increases, these techniques may not function as effectively. The ATM cash replenishment process may be predicted based on the present cash demand using evolutionary computing approaches. As a stand-alone method or in combination with an intelligent strategy, the aforementioned may be achieved[14]. These parameters may be tweaked to keep replenishment, storage, and lost-sale expenses to a minimum. Fuel expenses and driver salaries are examples of replenishment costs, which are incurred when ATMs need to be restocked. It's possible that the ATM's holding charges reflect interest that would have been earned if the money had been held elsewhere. Finally, they refer to lost-sales costs as the expenses incurred when an ATM is unable to provide the required amount because one or more denominations have been depleted [15].

Sl.	Paper title	Autho	Technique used	Findings (Result)	Remarks
no	-	r	-		
1.	ATM cash	Rafi	VAR-MAX model is	RMSE of 358950.12	Need very
	prediction	et.al	built for each ATM	was established by	long time
	using time		based on	comparing the	
	series		transaction data,	outcomes of	
	approach		which is then used	identical ATM	
			to predict future	datasets across 2.5	
			ATM performance.	million transactions.	
2.	Towards	Rafi	Using the ARIMA	In comparison to the	inaccurac
	optimal ATM	et.al	technique to time	other models	у
	cash		series data, this	examined, the	
	replenishmen		paper presents an	suggested model	
	t utilizing		ARIMA Time Series	generated an	
	time series		model for ATMs	average of	
	analysis		(TASM4ATM). Six	7.86/7.99 MAPE /	
			banking	SMAPE errors on	
			organisations' ATM	individual ATMs and	
			back-end refill data	6.57/6.64 on	
			was used in this	clusters of ATMs.	
			inquiry.		
3.	A LSTM Based	Azad	adopting a data-	Determining the	Inefficien
	Model for	et.al	driven method for	appropriate	t
	Predicting		the estimate of the	quantity of cash to	predictio
	ATM		proper quantity for	have on hand for	n

III. ATM CASH DEMAND FORECASTING - SURVEY SUMMARY

	Replenishme		each ATM or a set	transactions is a	
	nt Amount		of ATMs, a machine	difficult subject.	
			learning technique		
4.	Optimal ATM	Ekinci	Rather than	Uses prediction	Implemen
	replenishmen	et,al	creating point	intervals to allow	tation
	t policies		estimates, they use	for uncertainty in	cost is
	under		robust optimisation	future demand	high
	demand		using linear	predictions while	_
	uncertainty.		programming to	determining the	
	Operational		cope with	best replenishment	
	Research		unexpected future	quantities for many	
			cash demands.	ATMs belonging to	
				the same bank.	
				Robust optimization	
				problems are	
				handled to reduce	
				maximal regrets.	
5.	Clustered	Jadwal	The 'k-means'	When ATMs were	Predictio
	support	et.al	clustering	grouped before	n error is
	vector		approach was used	applying SVR, the	high
	machine for		to cluster ATMs in	RMSE was reduced.	
	ATM cash		order to perform	When comparable	
	repository		the clustered SVM	ATMs are clustered	
	forecasting		for ATM cash	into ideal clusters,	
			repository. The	machine learning	
			mean square error	algorithms may be	
			(rmse for ATM	trained more	
			clusters is used to	effectively, resulting	
			compare this error	in more accurate	
			to the efficiency of	forecasts.	
			a simple baseline		
			Svm Classifier		
			model.	T 1 -	NT 1
6.	Predicting	Gorode	Maximising ATM	It is being	Need very
	Time Series in	tskaya	demand and	investigated if the	long time
	the Banking	et.al	anticipating call	scenario produced	
	Sector Using a		centre and cash	can be used to solve	
	Machine		centre load may	particular banking	
	Learning		both be	activities in order to	
	Pipeline		accomplished using the scenario that	increase company	
			the scenario that	efficiency, including	
				maximising demand	

			has been	for ATMs and	
			constructed.	anticipating the load	
				on the contact	
				centre and cash	
				centre.	
7.	Optimal ATM	Kiyaei	Deep Q-Network	In order to obtain	Computat
	Cash	et.al	replenishment is	Cash demand	ional
	Replenishme		used to regulate	dynamic status is	complexit
	nt Planning in		ATM cash	learned by using a	y is
	a Smart City		replenishment	deep learning	greater
	using Deep Q-		operations to	component and an	
	Network		reduce refill costs	action-value	
			in a dynamic cash	function is learned	
			demand	by using a Q-	
			environment	learning component.	
			where the cash	However, in the true	
			demand fluctuates	execution of the	
			daily.	system, the two	
				components are	
				combined as a single	
				unit.	
8.	ATM cash	Chiussi	The population	Since the PCRs	Data
	replenishmen	et.al	coverage of the	varies in seven main	organisati
	t under		refreshed ATMs	Dutch cities, there	on is
	varying		and the length of	are substantial	difficult
	population		each route are used	discrepancies in	
	coverage		to create a list of	restocking ATMs in	
	requirements		minimum-cost	real life.	
			routes.		
9.	ATM Cash	Serengi	ATMs serve as	They'll	Inefficien
	Flow	l et.al	physical interfaces	demonstrate the	t
	Prediction		between banks and	predictability of	predictio
	and		their consumers.	daily cash	n
	Replenishme		Renouncing	withdrawals and	
	nt		interest is piqued	provide a cost	
	Optimization		when tangible	function for	
	with ANN		currency is stored.	optimising	
				replenishment	
10.	ATM Cash	Abeygu	Automated Teller	With this approach,	Predictio
	Replenishme	nawar	Machines (ATMs)	banks may lower	n error is
	nt Prediction	dene	at banks have made	the amount of	high
	Analyzing and	et.al	deposits and	interest paid to the	-
	T V Palakrichn		Litoraturo Survov O	-	

	forecasting		withdrawals of	Central Bank by	
	Cash For		cash more easier	analysing the	
	ATMs In		for consumers who	withdrawal patterns	
	Order To		visit the	of each ATM and	
			establishment.		
	Optimise the		establishment.	predicting the	
	Replenishme			quantity of currency	
	nt pro cess			notes that need to	
				be replaced in the	
			N	ATM.	
11.	Dynamic	Ozer	The proposed	Assuming accurate	inaccurac
	programming	et.al	method uses matrix	projections of	У
	solution to		chain	withdrawal	
	atm cash		multiplication by	amounts are	
	replenishmen		mapping the	available, we	
	t optimization		matrices to the	concentrate our	
	problem		daily ATM cash	efforts on	
			requirements.	determining the	
				best time to refill	
				our bank accounts	
				with cash.	
12.	Comparison	Ozer	Assume that ATM	The objective is to	Implemen
	of Integer	et.al	cash needs have	come up with a	tation
	Linear		previously been	replenishment	cost is
	Programming		forecasted in a	strategy that keeps	high
	and Dynamic		trustworthy	the ATM stocked	_
	Programming		manner. Authors	with cash and keeps	
	Approaches		suggest a dynamic	the cost of	
	for ATM Cash		programming	replenishment as	
	Replenishme		approach after	low as possible for a	
	nt		providing linear	certain number of	
	Optimization		programming-	days, loading fees,	
	Problem		based techniques.	and interest	
	i i obicini		bubeu teeninqueb.	expenses.	
13.	ATM Cash	Vishwa	ATMs should be	The LSTM	Computat
15.	Replenishme	karma	clustered according	architecture is	ional
	nt with	et.al	to withdrawal	designed to	complexit
	Clustering	chai	trends, and LSTM	maximise the	y is
	Series.		aids in the	demand for ATM	2
	501105.		reduction of		greater
				cash based on daily	
			unused cash	estimates for the	
			without negatively	following 31 days.	
			impacting the user	Logistics costs and	

			1	. D I	
			experience by	underflow	
			predicting future	predictions are	
			cash requests and	taken into account.	
			recommending the		
			most optimal		
			locations		
14.	Evolutionary	Krishn	ESO techniques	Some operational	Predictio
	computing	a et.al	may be used to	problems in banks	n error is
	applied to		handle bank	may be solved with	high
	solve some		operational	the use of	
	operational		problems such	evolutionary and	
	issues in		portfolio	swarm optimization	
	banks		management,	methods, which	
			bankruptcy	provide global or	
			forecasting, FX	near-global	
			price forecasting,	optimum answers.	
			gridlock resolution,		
			and ATM cash		
			replenishment.		
15.	Replenishme	van	According to our	ATMs may be able	inaccurac
	nt and	der	findings, the	to provide clients	у
	denomination	Heide	operating expenses	with the option of	J.
	mix of ATM	et.al	of administering an	choosing their own	
	with dynamic		ATM may be	combination of	
	forecast		lowered by 21% or	denominations or	
	demands		€153.77 per Atms	letting the ATM do	
			per month average	the work for them.	
			by using the time-	As an alternative,	
			varying	one might use a	
			denomination mix.	heuristic, which is a	
				less time-consuming	
				strategy	
16.	Determinants	Perera	To develop a	There are a number	Predictio
	of Automated	et.al	prediction model	of unpredicted	n error is
	Teller	20.01	for a specific ATM,	social and cultural	high
	Machine		regression analysis	elements that might	
	Loading		or time series	influence ATM cash	
	Demand		analysis may be	withdrawal	
	Requirements		employed; the	decisions.	
	in Sri Lankan		latter technique is		
	Cash Supply		suggested.		
			suggesteu.		
	Chains				

	ATM Cash	Velivas	Using current big	Changes in external	Implemen
17.	Management	aki	data & streaming	variables impacting	tation
	as a Critical	et.al	analytic	ATM cash	cost is
	and Data-	ct.ai	technologies, an	withdrawals may be	high
	intensive		ATM cash	detected by the	mgn
	Application		management	proposed method in	
	Application		application may be	both anticipated and	
			built on top of	unexpected ways.	
			them. Taking use of	ullexpected ways.	
			their capabilities		
			while also		
			addressing specific		
			application		
			requirements and		
			delivering value to		
			the Banking		
			and Financial		
			Services Insurance		
			application space.		
18.	An averaging	Cedoli	Using aggregated	By locating the	Need very
10.	approach to	n et.al	time data from an	cluster of ATMs	long time
	individual	ii et.ai	ATM network, it	where the	iong time
	time series		suggests a viable	aggregated series'	
	employing		decision-making	forecasting results	
	econometric		method. this study	are suitable, the goal	
	models: a		is to improve the	is to reduce the	
	case study on		ATM cash demand	predicted number of	
	NN5 ATM		forecasting	ATMs.	
	transactions		problem's		
	data		computing		
			efficiency.		
19.	Data-Driven	Zhou	Utilizing sales and	To estimate the	Data
	Cash	et.al	inventory data, the	safety stock and	organizati
	Replenishme		model established	replenishment	on is
	nt Planning of		in this study can	amount, the model	difficult
	Recycling		estimate	provides a standard	
	ATMs with		replenishment	level of service for	
	Out-of-Cash		schedules and	all ATMs. A	
	and Full-of-		amounts, lowering	significant future	
	Cash Risks		costs and raising	expansion to this	
			service levels.	study is a	
				combinatorial	

				optimization issue that occurs when considering various service levels for several ATMs.	
20.	Automated teller machine replenishmen t policies with submodular costs	Zhang et.al	They built an MDP model and used dynamic programming to infer many structural characteristics of the best strategy.	They used a real- world dataset of 139 ATMs, which included daily cash withdrawal data going back 20 months. With better service, they were able to demonstrate via a numerical research that index policy may save costs by 35% – 40%	Computat ional complexit y is greater

IV. ATM CASH DEMAND FORECASTING USING TIME SERIES APPROACH

When employing a time series technique to anticipate ATM cash flows, statistical models like auto regression, regression-averaging, and vector auto regression-averaging with exogenous variables (VARMAX) are all used. Information is divided 71/29 for training and testing in our technique, which is highly unlikely to be divide at a proportion greater than 29/71 for training and validation in the normally specified way. Previous methods used a Moving Average (MA) technique, which is not a viable way to make information stable. Information differentiation is used in our technique to cope with a similar issue: "Computes the distance between a Data Frame component and another Data Frame element" [26]. To eliminate the trend and bring the series to a stable, differencing and power conversions are frequently employed [25]. (P, d, q) is a norm used in the ARIMA model, where'd' is the amount of integrations (i.e., differentiations) necessary to make information that has been stable using the Moving Average initially. In order to use ARIMA, researchers used the original information to build a model and then predicted the outcome. To put it another way, it's found that the findings are good enough to go forward.

Automated Teller Machine cash demand forecasting requirements have been set for developing and developed countries alike, regardless of economic condition. ATM cash demand has been forecasted using a number of methods, depending on the severity of the ATM industry. A clustered ATM can get accurate withdrawal quantities based on similar weekly withdrawal patterns using an artificial neural network based on time series. General Regression Neural Network is regarded the best option for anticipating the demand for ATM cash. [16]. Cash demand and possible temporal trends may be

gleaned from the data gleaned from ATMs. Cash balance information, such as the location, amount entered upon replenishment, and date, will be included in the ATM stream. Each ATM's cash balance will also be included. There are no important changes predicted in the ATM data in the next few seconds, thus an update pace of a few minutes is acceptable [17].

Researchers present decision-making techniques that use aggregated ATMs time series. By selecting the cluster of ATMs where the aggregate series' forecasts are appropriate to use. They hope to minimise the ATM Cash forecasted by independent modelling approaches. Automatic moving average and seasonal SARIMA are used to fit time series data. The use of averaged time series simplifies the forecasting procedure for each ATM. It is feasible to discover ATMs that may be projected using this strategy by averaging data[18]. ATMs that enable cash deposits and withdrawals are replenished in a particular (s, S) inventory model, with two safety stocks, one for out-of-stock and one for full-stock risks, which determines the ATM locations that must be supplied each day and the amount of money that must be replaced [19], [20] and to develop an ATM replenishment strategy for a bank with a large number of ATMs. The goal is to reduce the costs of replenishments and cash outs, taking account the economy of scale involved with restocking cash several ATMs at once.. Restocking costs often rise when a third-party provider is engaged for cash replenishment schedule design approach for financial institutions. To determine which ATMs to refill, the replenishment scheduling took into consideration the total cash inventories at all ATMs, as well as the demands of the network and the associated expenses.

V. TRENDS IN ATM CASH FORECASTING MANGEMENT

a) Notion of Artificial Intelligence

In the future, computers may be able to learn from their mistakes and enhance their effectiveness with artificial intelligence (AI) (including forecast or robot control). The degree to which some replies closely resemble the correct ones serves as a measure of precision. Data science has seen a surge in interest in artificial intelligence (AI) in recent years, particularly in the diagnosis of cardiovascular illness. [21], software architecture is built [22], and the discovery of recurring design patterns [23]. Guided, unsupervised, and evolutionary learning are all types of artificial intelligence (AI) methodologies.

b) Supervised Learning

It's also known as learning from exemplars and is a form of AI approach in which the proper answers (targets) are given to a training collection of instances and the methodology is then generalized so that it responds appropriately to any input. Techniques like Support Vector Machines as well as Lazy Learning and Neural Networks are included in this group. All of these methods use a unique algorithm.

c) Unsupervised Learning

There is no supervisor, and all they have is input information, in this group. Identifying the patterns in the input is the goal. The input space has a design that makes some patterns appear more frequently than others, and they want to observe what occurs in the input space on average and what fails to. This is known as computation in statistics. Grouping, Pearson Correlation, and Anomaly identification are 3 of the most common methods in this group, and they all make use of probabilistic, deterministic and timed-transition automation.

d) Evolutionary Learning

To find the best solution to the issue, these methods imitate the process of natural progression. A population of remedies may be steadily improved by using the benefits of options with varied levels of fitness. There are several evolutionary algorithms, including Genetic Algorithm, Particle Swarm Optimization (PSO), and Artificial Immune Systems (AIS), that focus on optimization (AIS).

e) Other Techniques

Some studies utilized a strategy for information retrieval that did not adhere to the categories indicated above, thus they included them in this category. Statistical and dimensionality minimization and quantitative optimization, a mathematical methodology, were applied in these methods.

f) Hybrid Techniques

Data mining methods exist for each of the previously listed categories, but many researchers choose to integrate these approaches in order to come up with a new strategy or a solution to various portions of their issue. As a result, a number of studies have been placed under this "Hybrid" category.

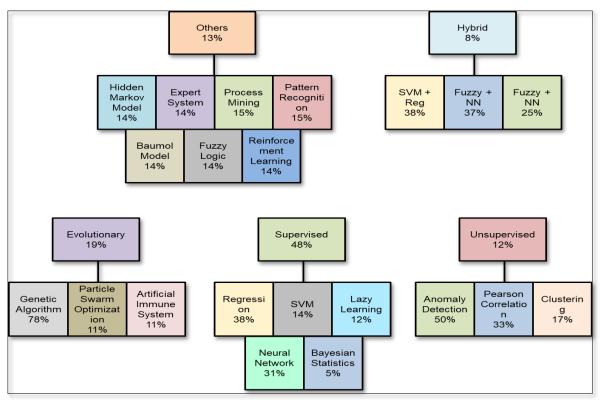


Figure 2.Rate of AI technique classification employed in ATM supervision [24]

VI. CONCLUSION

As more and more banks increase their ATM networks across the globe and voluminous transactional growth is recorded due to 'On-Us' and 'Off-Us' transaction, most regulators of countries show their special attention to make ATMs are functional, available to customers 24X7 and fully enabled with cash dispensing as per customers' demand. More monitoring is being exercised during the exigency time span like the present COVID lockdown (on and off extensions). Customer satisfaction and Return on Investment of ATM assets may be improved by using the reasonably good methodology, on ATM cash management. Clustering ATMs based on transaction patterns and cash demand similarities will be used to estimate cash demand in the future.

REFERENCES

1. Rafi, M., Wahab, M.T., Khan, M.B. and Raza, H., 2020, January. Atm cash prediction using time series approach. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-6).IEEE.

2. Rafi, M., Wahab, M.T., Khan, M.B. and Raza, H., 2021. Towards optimal ATM cash replenishment using time series analysis. Journal of Intelligent & Fuzzy Systems, (Preprint), pp.1-13.

3.Asad, M., Shahzaib, M., Abbasi, Y. and Rafi, M., 2020, November. A Long-Short-Term-Memory Based Model for Predicting ATM Replenishment Amount.In 2020 21st International Arab Conference on Information Technology (ACIT) (pp. 1-6).IEEE.

4.Ekinci, Y., Serban, N. and Duman, E., 2021. Optimal ATM replenishment policies under demand uncertainty.Operational Research, 21(2), pp.999-1029.

5.Jadwal, P.K., Jain, S., Gupta, U. and Khanna, P., 2019. Clustered support vector machine for atm cash repository prediction. In Progress in Advanced Computing and Intelligent Engineering (pp. 189-201).Springer, Singapore.

6.Gorodetskaya, O., Gobareva, Y. and Koroteev, M., 2021, September. Forecasting Time Series in the Banking Sector Using a Machine Learning Pipeline.In 2021 14th International Conference Management of large-scale system development (MLSD) (pp. 1-5).IEEE.

7.Kiyaei, M. and Kiaee, F., 2021, March. Optimal ATM Cash Replenishment Planning in a Smart City using Deep Q-Network. In 2021 26th International Computer Conference, Computer Society of Iran (CSICC) (pp. 1-5).IEEE.

8.Chiussi, A., Orlis, C., Roberti, R. and Dullaert, W., 2020. ATM cash replenishment under varying population coverage requirements.Journal of the Operational Research Society, pp.1-19.

9. Serengil, S.I. and Ozpinar, A., 2019. ATM Cash Flow Prediction and Replenishment Optimization with ANN. International Journal of Engineering Research and Development, 11(1), pp.402-408.

10. Abeygunawardene, L., 2020. ATM Cash Replenishment Prediction AnalyzingAnd Predicting Cash For ATMs In Order To Optimise the Replenishment process (Doctoral dissertation).

11.Ozer, F., Toroslu, I.H., Karagoz, P. and Yucel, F., 2018, October. Dynamic programming solution to atm cash replenishment optimization problem.In International Conference on Intelligent Computing & Optimization (pp. 428-437).Springer, Cham.

12.Özer, F., Toroslu, I.H. and Karagoz, P., 2020. Comparison of Integer Linear Programming and Dynamic Programming Approaches for ATM Cash Replenishment Optimization Problem.International Journal of Applied Metaheuristic Computing (IJAMC), 11(3), pp.120-132.

13.Vishwakarma, V., James, H., Bururu, R.K., Matto, J. and Bank, C.I.M.B., ATM Cash Replenishment with Clustering Series.

14. Krishna, G.J. and Ravi, V., 2019. Evolutionary computing applied to solve some operational issues in banks. In Optimization in Industry (pp. 31-53). Springer, Cham.

15.van der Heide, L.M., Coelho, L.C., Vis, I.F. and van Anholt, R.G., 2020. Replenishment and denomination mix of automated teller machines with dynamic forecast demands. Computers & Operations Research, 114, p.104828.

16.Perera, K. and Hewage, U., 2018, December. Determinants of Automated Teller Machine Loading Demand Requirements in Sri Lankan Cash Supply Chains.In 2018 International Conference on Production and Operations Management Society (POMS) (pp. 1-7).IEEE.

17.Velivasaki, T.H.N., Athanasoulis, P. and Trakadas, P., 2019. uCash: ATM Cash Management as a Critical and Data-intensive Application. In CLOSER (pp. 642-647).
18.Cedolin, M. and Genevois, M.E., 2021. An averaging approach to individual time series employing econometric models: a case study on NN5 ATM transactions data. Kybernetes.

19. Zhou, Y., Wang, Q., Wu, Y. and Huang, M., 2020. Data-Driven Cash Replenishment Planning of Recycling ATMs with Out-of-Cash and Full-of-Cash Risks. International Journal of Information Systems and Supply Chain Management (IJISSCM), 13(2), pp.77-96.

20. Zhang, Y. and Kulkarni, V., 2018. Automated teller machine replenishment policies with submodular costs. Manufacturing & Service Operations Management, 20(3), pp.517-530.

21. Homayounfar E, Sepehri MM, Hasheminejad MH, Ghobakhloo M. Designing a chronological based framework for condition monitoring in heart disease patients-a datamining approach (DM-PTTD). Iranian Journal of Medical Informatics 2014; 3(3).

22. Hasheminejad SMH, Jalili S. CCIC: Clustering analysis classes to identify software components. Information and Software Technology 2015; 57: 329-351.

23. Hasheminejad SMH, Jalili S. Design patterns selection: An automatic two-phase method. Journal of Systems and Software 2012; 85(2): 408-424

24. Hasheminejad, S.M.H. and Reisjafari, Z., 2017. ATM management prediction using Artificial Intelligence techniques: A survey. Intelligent Decision Technologies, 11(3), pp.375-398.

25. RatnadipAdhikari and R. Agrawal. An Introductory Study on Time series Modeling and Forecasting. Jan.2013. ISBN: 978-3-659-33508-2. DOI: 10. 13140/ 2.1.2771.8084.

26. Python Documentation. Pandas Data Frame Diff.

https://pandas.pydata.org/pandasdocs/stable/reference/api/pandas.DataFrame.diff.ht ml. Accessed on 2019-10-21.