

Some Analysis Tools To Identify Difficulties In The Teaching And Learning Of The Integral Concept

Wilson J. Pinzon, Faculty of Environment, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

Wilson Gordillo, Faculty of Environment, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

Miguel A. Ávila A.,Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia.

ABSTRACT. This article is the result of a research process where the instruments that allow a macroscopic and microscopic analysis of calculus textbooks are presented, in order to identify some difficulties that may arise in the teaching and learning process of the integral concept. The instruments make explicit the criteria to be evaluated, in order to facilitate the analysis and the curricular and methodological decision making.

Keywords: Teaching, learning, integral, calculus, difficulties.

I. INTRODUCTION

Learning and teaching the integral is a particularly valuable topic, as integration serves as the basis for many real-world applications and subsequent coursework [1] [2], appearing in a variety of contexts within physics and engineering [3] [4] [5]. The identification of students' difficulties with the concept of integral has been documented over the years in several studies [6] [7] [8] [9] [10] [11].

This paper presents four instruments designed to identify the difficulties present in the teaching and learning of the integral concept in a calculus text. The approach is based on two levels of analysis, one macroscopic and the other microscopic.

II. MACROSCOPIC TEXTBOOK ANALYSIS

The macroscopic analysis of a calculus textbook seeks to characterize the institutional meaning of the object to be taught - the integral - by taking into account the number of pages, the number of units, their distribution by chapters, sections and units, the structure of the unit, the location of the activities, the use of computer resources and their greater or lesser approximation to the constructivist model.

In order to achieve an orderly and effective analysis, concept maps should be constructed through which it is possible to detect conceptual errors and at the same time to visualize the evolution of the concept over time. This same instrument makes it possible to determine the level of prior knowledge of the author of a text, which interacts with the knowledge presented in formal instruction, often giving rise to a diverse set of learning that is not always desired.

III. MICROSCOPIC TEXTBOOK ANALYSIS

In the micro analysis, which deals with the description and interpretation of the author's ways of knowing about the concept of the integral as a mathematical object and as an object of teaching and learning, four instruments were designed that allow a detailed look at aspects such as: the integral as a mathematical object [12] [13], as an object of teaching and learning, the design and conformation of the exercises and their classification according to their typology. The first instruments that are proposed, inquire about the integral as a mathematical object; for this purpose, the following are taken into account:

(a) Syntactically, the symbology, the definition, the way the concept is introduced and the techniques used to define the integral.

Table 1: Syntactic aspects of the integral as a mathematical object present in the text, source Authors.

				re	No
				S	110
		Δx, Δy			
	What Symbols are	dy, dx			
	used?	\sum			
		ſ			
		Perimeter and area			
		Area under the curve			
	What does $\int^{b} f(x) dx$	Coincidence of functions			
	d_{a}	Multiplicationbased summation (ME	3S)		
	or $\int_{c}^{a} f(y) dy$ mean ?	Indivisible			
FORM (SYNTAX)		Fragmentation method			
		Other			
	How do you introduce the concept?	Following the historical genesis of	1		
		the concept	2		
		Following the historical genesis of	1		
		the concept	$_2$ a		
			² b		
		Direct technique: definition of the der	iva-		
		tive			
	What techniques are	Indirect derivative technique: derivat	tion		
	what techniques are	rules			
	covereu:	Numerical approximation techniqu	le		
		Graphical approximation techniqu	e		
		Transformation			

т	Uau da yay handla	Approximation		
1	How do you nandle	Variation		
L.	ne concept of allea?	Transformation		
		Bounded surface		
V	What is the working	Infinite sum		
	meaning of area?	Surface under a curve		
		Sum of integrands		
Н	How do you handle the transition from the derivative to the inte-			
	gral?			
		Area under curve		
	What geometric	Perimeter and area		
	meaning is being	Multiplicatively based summation (MBS)		
	worked out?	Indivisibles		
		Chopping up method		

(b) In terms of semantics, the approach used, the situations through which the concept is introduced, the handling given to the concept of area and its meaning, the different geometric meanings attributed to it, etc.

Table 2: Semantic aspects of the integral as a mathematical object present in the text, source Authors.

			Ye	No
			S	
		Algebraic		
		Numerical		
		Formal		
	What approach do you	Infinitesimalist		
	use?	Local affine approximation		
		Geometric		
		Variational		
ر) ر		Computational		
	With what situation do	Approximation		
ITI	you introduce the con-	Variation		
ITE	cept?	Transformation		
CON EM	How do you handle the concept of area?	Approximation		
(S		Variation		
		Transformation		
		Bounded Surface		
	What is the working	Infinite sum		
	meaning of area?	Surface under a curve		
		Sum of integrands		
	How do you handle the transition from the derivative to the inte-			
		gral?		
	What geometric mean-	Area under curve		

ing is being worked	Perimeter and area	
out?	Multiplicatively based summation (MBS)	
	Indivisibles	
	Chopping up method	

(c) Regarding the definition, the characteristic elements (conventionality, minimality), the type of definition used (area, antiderivative, summation, etc.)

Table 3: Aspects of the definition of the integral as a mathematical object present in the text, source Authors.

				Ye	No
				S	110
			Esthetics		
		Conventionali-	Operations		
		ty	Didactics		
	What is the sharestor		Hierarchical		
ITION	istic of the definition?		Partitional		
			Nominal		
		Minimality	Sufficient condition		
FIN			Necessary condition		
ΟEI			p if and only if q		
Ι		Area			
		Antiderivative			
		Summation			
	use:	Sum Integrating			
			Average		

(d) In relation to representation, phenomenology and context.

Table 4: Aspects of the representation of the integral as a mathematical object present in the text, source Authors.

			Ye	No
			S	110
REPRESENTATION	Phenomenology	Mathematics		
		Physics		
		Other		
	Context	Algebraic		
		Numerical		
		Verbal		
		Graphical		

The following proposed instruments seek to analyze aspects of the integral as an object of teaching and learning present in the text.

(a) Through a look at the form-content of the object (syntax/semantics).

Table 5:Aspects of the representation of the integral as a mathematical object present in the text, source Authors.

	What is the sequence of the contents?		
		Definition	
		Sample Exercise	
	From what point is the con-	Examples	
	cept introduced?	No examples	
		Actual situation	
		History of science	
	What type of activities are presented?		
	What type of overcises and /or	Approximation	
S	problems are presented?	Variation	
NT LIC	problems are presented.	Transformation	
TE. AN		Internalization of actions	
ON M	What cognitive processes emerge from the mathemati- cal activity?	into processes	
/ C /SF		Encapsulation of process-	
AX		es into objects	
'OR NT		De-encapsulation of ob-	
F SY		Jects into processes	
		Generalization	
		Generalization of schemas	
	What perspectives of the con-	Action	
	cept are encouraged in the ac-	Process	
	tivities?	Object	
		Schema	
		To introduce the concept	
	What is the use of the history	Handling historical prob-	
	of science ²	Dhonomonological aspecta	
	OI SCIEIICE!	that gave rise to the con	
		struction of the concept	

(b) On the translations and relations between the representations that the text makes of the object.

Table 6: Aspects of translations and relations between the representations of the integral as an object of teaching and learning present in the text, source Authors.

ANSL IONS ND LATI	What role is given to translations and rela-	
TR/ ATI A REI	tions between represen- tations in the task ap-	

	proach?	
	What translations be-	
	tween semiotic represen-	
	tations are used?	
What relations between		
	semiotic representations	
	are used?	

The exercises or problems proposed by the author are classified into three typologies of problems that are usually treated in differential calculus textbooks. These typologies allow to simplify the analysis of the exercises proposed in each section of the textbook, helping to establish comparative relations between them and thus, helps to show the absent and not evident mathematical topics that can become a didactic obstacle of the integral concept, these typologies are:

- Of approximation
- Of variation
- Of transformation

The analysis of each of the above groups is done through the following instrument, which consists of seven general categories called: phenomenology, statement, representation, techniques, technological resources, translations and relations $\int f(x)$ to F (x) and cognitive processes; these in turn are divided into subcategories that seek to facilitate a more thorough analysis, the instrument is presented below.

Table 7: Aspects of translations and relations between the representations of the integral as an object of teaching and learning present in the text, source Authors.

			Yes	No	
		Mathematics			
	Pure	Physics			
Dhan am an ala ar		Other			
Phenomenology		Mathematics			
	Historical	Physics			
		Other			
Ctotomont		Verbal			
Statement	Non-verbal				
	Algebraic				
	Numeric				
Context	Verbal				
	Geometric				
	Graphical				
	Area under curve				
Technique or proce-	Perimeter and area				
dure	Multiplicatio	n-based summation (MBS)			
	Indivisible				
	Resources (technology)				

Translations and relations∫f(x) to F (x)				
Cognitive processes				

The first category called phenomenology uses the classification proposed by Puig [14], i.e. it differentiates between pure phenomenology, understood as the activities proposed by the author with mathematics in its current state and its current use, and historical phenomenology, understood as the activities proposed by the author based on the phenomena that gave rise to the mathematical concept in question and how these extend to other phenomena in other sciences.

The second category, the statement visualizes the tasks proposed by the author, facilitating the observation of the common characteristics among the problem situations, and helps to observe the frequency with which certain types of problems appear in the exercises proposed by the author and, in turn, the similarities and differences among the examples proposed.

The third category, identified as context, seeks the classification of the mathematical problems or exercises proposed by the author in the text according to their verbal or descriptive, algebraic, numerical and geometric environment.

The fourth category taken into account is the technique or procedure used to classify the exercises or problems depending on the way to integrate functions, that is, the different proposals for the calculation of the integral (analyticity, prediction and trend behavior of the function) are examined.

In the fifth category or resources, attention is focused on the author's use of new technologies as an enriching element in the teaching of mathematical concepts. The use of new technologies in textbooks brings with it a new range of possibilities for the teaching-learning of mathematics. The main reason is that these instruments can show, in a dynamic way, concepts that are very difficult to teach in the traditional way.

The sixth category, or translations and relations between representations, specifies the understanding of the integral concept.

The last category, cognitive processes, is based on the didactic decomposition of the integral concept, taking up the categories for the analysis of the tasks that deal with the translation between representations from $\int f(x)$ to F (x), and vice versa.

IV. CONCLUSIONS

A macroscopic analysis makes it possible to determine the structure of the text, taking into account its organization and other general aspects.

The microscopic analysis attempts to establish in detail and with the help of the instruments proposed in this article, the nature and characteristics that from the author's perspective are attributed to the mathematical objects, to the teaching and learning objects and to the exercises contained in the chapter under study. Both the macroscopic analysis and the microscopic analysis jointly seek to determine the existence of evidence in relation to elements that can be considered generators of difficulties in the teaching and learning of the integral.

The didactic choices established in a situation of teaching a mathematical concept can generate a difficulty, centered on two aspects of the construction of knowledge: one related to the use of the language of calculus, and the other to the contexts of exemplification and experimentation for the construction of knowledge.

The integral concept has difficulties that start from its meaning and are intrinsically related to the concept itself.

REFERENCES

- V. Sealey, "A framework for characterizing student understanding of Riemann sums and definite integrals."The Journal of Mathematical Behavior33 (2014): 230-245.
- [2] P. Thompson, and J. Silverman, "The concept of accumulation in calculus."Making the connection: Research and teaching in undergraduate mathematics73 (2008): 43-52.
- [3] H. Russell, Engineering mechanics: statics. Vol. 11. Pearson Education, 2006.
- [4] S. Raymond, and J. Jewett, Physics for scientists and engineers. Cengage learning, 2018.
- [5] P. Tipler, and G.Mosca, Physics for scientists and engineers. Vol. 6. Freeman and Company, 2008.
- [6] J. Bezuidenhout, "Limits and continuity: some conceptions of first-year students." International journal of mathematical education in science and technology 32.4 (2001): 487-500.
- [7] A. Orton, "Students' understanding of integration." Educational studies in mathematics 14.1 (1983): 1-18.
- [8] S. Rasslan, and D. Tall. "Definitions and images for the definite integral concept." PME conference. Vol. 4. 2002.
- [9] D. Tall, " The transition to advanced mathematical thinking: Functions, limits, infinity, and proof." Handbook of research on mathematics teaching and learning (pp. 495–511). (1992): 229-274.
- [10] P. Thompson, "Images of rate and operational understanding of the fundamental theorem of calculus." Educational studies in mathematics 26.2 (1994): 229-274.
- [11] J. Steven, "Understanding the integral: Students' symbolic forms." The Journal of Mathematical Behavior 32.2 (2013): 122-141.
- [12] J. Steven, "The prevalence of area-under-a-curve and anti-derivative conceptions over Riemann sum-based conceptions in students' explanations of definite inte-

grals." International Journal of Mathematical Education in Science and Technology 46.5 (2015): 721-736.

- [13] J. Steven, "Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and applied science contexts." The Journal of Mathematical Behavior 38 (2015): 9-28.
- [14] B. Jiménez, and E. Rosa, "La Derivada como objeto matemático y como objeto de enseñanza y aprendizaje en profesores de matemática de Colombia la derivada, un concepto a caballo entre la matemática y la física." (2004).