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ABSTRACT- Multi- objective optimization in structural applications is generally performed with the help of  complex 
computer codes such as Finite Element Analysis (FEA) which are computationally very expensive. Surrogate models 
or meta- models are comparatively economical and very useful to optimize design solutions.  In the earlier studies, 
authors have developed Advanced Surrogate Assisted Multi- objective Optimization Algorithm (ASAMO) by creating 
and selecting best single and mixture surrogate models for each offspring solution by Dempster- Shafer theory (DST). 
For this purpose MATSuMoTo, the MATLAB based tool box is modified for multi- objective optimization problems. In 
the present study, a Refined Advanced Surrogate Assisted Multi- objective Optimization Algorithm (RASAMO) is 
presented in which the quality of Pareto- Front of ASAMO algorithm is improved by adopting a Target Value Strategy. 
The effectiveness of Target Value Strategy is improved: (i) by adding multiple points per optimization iteration, and 
(ii) by developing most efficient surrogate models. RASAMO is applied to multi- objective machine tool spindle design 
problem. RASAMO resulted into 1.5% improvement in NHV value and 8.5% for the spread value for less number of 
function evaluations as compared to ASAMO. RASAMO is very easy to apply on benchmark and engineering 
applications. 
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I. INTRODUCTION 

Multi-objective optimization problems (MOOP) have more than one objective functions and all of them are 
required to be simultaneously minimized. The actual engineering optimization problems fall under this 
category of optimization [1]. These problems have several design variables and subjected to a large 
number of constraints. Solution of these MOOPs usually involves multiple optimization iterations. Pareto- 
Front solutions are the set of optimized solutions where it is not possible to further minimize one 
objective function without compromising on the value of other objective functions. 

The main objective of any MOOP solving algorithm is to find out this Pareto- Front solution. To solve the 
complex engineering problems such as crash simulations usually involve the use of Finite Element 
Analysis (FEA) which are very time consuming even with today’s advanced computers. For FEA based 
multi- objective complex engineering problems requires numerous number of these computer 
simulations. Surrogate models or meta- models are useful in approximating these simulations and are 
very less time consuming to solve.  In the present study, A new algorithm RASAMO is proposed in which 
the quality of Pareto- Front of ASAMO algorithm is improved by adopting a Target Value strategy. The 
target value strategy is a non- evolutionary algorithm (SOCEMO algorithm) [3], which adds new points 
in to objective space and thus,  results into well diversified equally spaced Pareto- Front solution. The 
effectiveness of original target value algorithm is increased by adding multiple points per optimization 
iteration and by developing most efficient surrogate models. The developed algorithm is applied to multi- 
objective machine tool spindle design problem. 

The brief outline of the paper is as follows. Section 2 provides the brief literature review carried out for 
the history of MOOP solving algorithms and surrogate models. In section 3, the details of MOOP and 
surrogate model based MOOP problem definition are provided. RASAMO algorithm with suggested 
improvements in ASAMO algorithm by target value strategy is presented in section 

5. The developed concepts are applied on the real engineering optimization problem of machine tool 
spindle design. This is a multi- objective optimization problem with non- linear constraints. Key results 
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and their discussion are detailed in Section 6. Important conclusions and future scope of this study are 
summarized in Section 7. 

 

II. LITERATURE REVIEW 

On the basis of type of solution methods, MOOP solving algorithms are of evolutionary non - 
evolutionary types. 

In evolutionary category, NSGA-II (Deb [4]) is the most prominent algorithm. Since NSGA-II 
algorithm is population based, it requires many iterations to get the final solutions. Surrogate 
model based evolutionary algorithms developed in this field.  Different types of surrogate models 
are developed for this purpose. The combination of NSGA-II with Artificial Neural network was 
suggested by Nain et al. [5]. 

SMES-RBF algorithm developed by Datta et al. [6] is developed for constrained MOOP  solution. The 
effect of various types of surrogate models on the quality of non- dominated solutions is studied by 
Kunakote et al. [7] in SPEA-II algorithm. Pareto- efficient global optimization – ParEGO, a Kriging 
surrogate model based algorithm was introduced by Knowles, J. [8]. SAMO- a surrogate assisted 
evolutionary algorithm is developed for constrained MOOP solution (Bhattacharjee et al. [9]). 
ASAMO- an advanced Surrogate model assisted multi- objective optimization (ASAMO) problem 
solving algorithm is developed by authors [2]. MATSuMoTo [10], a MATLAB based tool box is used 
to develop the advanced surrogate models ([11], [12]).  Mixture surrogate models are created by 
using Dempster-Shafer Theory [13]. 

In non- evolutionary category, Müller [3] has developed SOCEMO algorithm which is a RBF 
surrogate model based optimization method for solving computationally expensive unconstrained 
multi-objective problems. In this study, target value strategy [3] is developed for ASAMO algorithm 
to improve the quality of final non- dominated solutions. Sugumaran Narayanan [14] has used 
statistical models for unified explanation of occurrence of Civil Wars. William Lau [15] has used 
regression models for predicting Hong Kong petroleum stock pricing model.  

 

III. SURROGATE MODELS BASED MULTI- OBJECTIVE OPTIMIZATION 

In general, a MOOP is defined [16] by the following expressions: 

 

   

x 

subjected to 

; , j=1, 2,….,k 

,  

 

(1) 

 

In the above expression, represent M objective functions subjected to I constraints with 
V number of design variables . The solutions of these problems involve many iterations which are 
based on complex computer codes such as Finite Element Analysis (FEA) and thus require a huge 
amount of computational efforts. Surrogate models are the approximations of these solutions and 
are found to be very useful in such situations as they are computationally very less expensive. In 
the surrogate-based multi-objective problem solution approach, non- dominated (Pareto- front) 
solutions are obtained by approximation of these functions by equivalent surrogate models 
( . 

The problem is formulated as follows: 
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subjected to , j=1, 2,….,k 

 

(2) 

For the creation and choice of the finest metamodel, Matlab [17] based MATSuMoTo  is used, which 
utilizes DS theory to combine the effect of four surrogate model characteristics.  

Advanced surrogate models are created by creating and selecting best single and mixture surrogate 
models for each offspring solutions by Dempster- Shafer theory (DST).Table 1 shows the summary 
of surrogate model types. 

Table 1: Summary of surrogate model types [10] 

Single Surrogate  

“RBFcub” “Cubic radial basis function interpolant.” 

“RBFlin” “Linear radial basis function interpolant.” 

“POLYquad” “Full quadratic regression polynomial.” 

“POLYcub” “Full cubic regression polynomial.” 

Mixture Surrogate:  

“MIX RcPc” “Ensemble of  RBFcub  and POLYcub” 

“MIX RcPq” “Ensemble of  RBFcub  and POLYquad” 

ASAMO algorithm has evolutionary base and does not use any mathematical operators for the 
optimizations so it is difficult to ensure the convergence [18]. Various strategies are adopted to 
improve the convergence property of non- dominated solutions. 

 

Fig. 1. Refined Advanced Surrogate Assisted Multi- objective Optimization Algorithm 
(RASAMO) 
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IV. REFINED ADVANCED SURROGATE ASSISTED MULTI- OBJECTIVE OPTIMIZATION ALGORITHM (RASAMO) 

In the related work by authors, an advanced surrogate assisted multi- objective (ASAMO) algorithm [5] is 
developed to solve constrained MOOP. In this study, authors refined this algorithm and presented the 
effectiveness of RASAMO algorithm for the constrained MOOP solution. This study showed the effect of 
various surrogate models on the quality of final Pareto- Font solutions. In the present article, the 
strategies of the improvement of the quality of non- dominated solutions are discussed. 

The Target value strategy is developed by Muller et al. [3] for their non- evolutionary MOOP solving 
algorithm (SOCEMO). This algorithm uses RBF surrogate model and is capable to solve un - 
constrained MOOPs. In each optimization cycle, only single point is added in the objective spa ce. 
The following section describes about the target value in brief. Further details of this strategy are 
provided in SOCEMO algorithm [3]. 

The target value strategy is a two-step process of determining feasible solutions. The algorithm 
starts with the determination of lower and upper bounds of each objective functions. In the 
objective space, any one of the objective function is assumed as independent variable and a linear 
RBF function is created by treating others as dependent variable. The choice of inde pendent 
objective function is not important. Next step is the determination of points in the gap of the 
Pareto- Front by following Max_Min distance approach [3] with respect to all the existing points. 
This step is illustrated in Figure 2 by addition of two target values in the gap of Pareto- Front 
solution of ASAMO algorithm. 

 

Fig. 2 : Illustration of finding multiple target values in the objective space for RASAMO 
algorithm 
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In the next step, for each of the target value, corresponding point in the decisi on space is 
determined by solving following multi- objective surrogate model based optimization problem [3].  

   

 

subjected to , j=1, 2,….,k 

 

(3) 

 

In this MOOP definition, is the  global surrogate model for  objective function and  is the 
target value for this objective function.  is the surrogate model for the individual constraint 

functions. This MOOP is solved by genetic algorithm to get the point in the decision space. If the 
points in the decision space are feasible then they are added to global data set.  The target value 
strategy is modified to make it suitable for ASAMO algorithm. Following changes are made for this 
adaptation. For faster convergence, the target value strategy is modified for multiple target values 
as oppose to addition of single target value for each optimization cycle.  

As RBF surrogate model may not be suitable to approximate all the objective and constraint 
functions, single best and best mixture surrogate models are developed for target value strategy. 
This is in addition to RBF surrogate models. 

The performance of any MOOP solving algorithm is quantitatively measured by performance 
metrics of the algorithm. Generally the performance metrics should be able to measure the 
convergence property and diversity of non- dominated solutions. Two parameters should be 
considered to measure the performance of any MOOP solving algorithms.  

1. Normalized Hyper Volume (NHV) is considered as one of the performance metric which 
simultaneously measures the convergence property and diversity of the final non- dominated 
solution[19].  Higher value of NHV parameter is preferred. 

2. Spread is another performance metric which measures the diversity of the solution by measuring 
the spread of the Pareto-Front solution [20]. Lower value of Spread is preferred. 

 

V. METHOD OF ANALYSIS (NUMERICAL EXPERIMENTS) 

For testing the efficiency of the improvement in the advanced surrogate based multi- objective 
optimization algorithm by target value strategy, optimization of machine tool spindle design [16] is 
chosen which has 4 design variables. These design variables are combination of continuous and 
discrete design variables. Figure 2 displays the schematic dia gram of machine tool spindle design 
[16]. 
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Fig. 3: Details of machine tool spindle with design variables . 

This problem is a MOOP with 2 objective functions, 3 constraints and 4 design variables. In 
mathematical terms, the problem is defined as follows 

 

  

subjected to , j=1, 2,….,3 

 

(4) 

This is a typical example of multi- objective optimization with minimization of volume and 
deflection  [11]. 
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Target value strategy is developed for ASAMO algorithm and the effectiveness of this strategy is 
studied on this engineering problem. 

 

VI. RESULTS AND DISCUSSION 

For RASAMO, NSAGA- II is the base evolutionary algorithm [2]. The crossover distribution index 
(etc) is set to 20. Etam (Mutation distribution index/ mutation constant) is set at 20. Mutation 
probability (pm) is set at 0.4. Number of start point is  set at 30. The population size is 30. Number 
of generations is set to 50. SHLD is used for initial design. The maximum number of costly function 
evaluations is 400. For target value strategy, 3 points per optimization cycle are added on the non - 
dominated solutions to ensure faster convergence. 

RASAMO algorithm utilizes target value strategy. As shown in table 1, various types of single and 
mixture surrogate models are created locally for each offspring solution. The results of the target 
value strategy are compared for RBF, single best and best mixture surrogate models. Table 2 
provides the Comparative study of quality of Pareto- Front for all surrogate models with target 
value strategy 

 
 
 
 
 
 
 

  is defined by following expression–  

 

(5) 

  

 is defined by following expression  

 

(6) 

  

;    

  

;   

  

;  are the design proportionality constraints  

 (7) 

 (8) 

  

 

(9) 

Bound Constraints:    ;  ; (10) 

;   
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Table 2: Comparative study of quality of Pareto- Front for all surrogate models with target value 
strategy 

 

Figures 4 shows the Pareto- Front solution obtained from ASAMO algorithm with RBF cube 
surrogate model. From this figure it can observed that the non- dominated solutions are unequally 
spaced in the form of 3 disconnected regions. Figure 4 shows the above configuration of ASAMO 
algorithm with Target value strategy (RASAMO). This Pareto- Front clearly shows the improvement 
in spread of non- dominated solutions with 4 disconnected uniform spread solutions. Figure 6 
compares the Pareto- Front of obtained by both the above configurations. 

 

Fig. 4: Non dominated front for ASAMO algorithm for RBF cube surrogate model 

 

Fig. 5: Non dominated solution for RASAMO algorithm for RBF cube surrogate model with and 
without target value strategy 

Type of Surrogate Model Figure 
Numbers 

Remarks 

ASAMO with RBFlcube 
model 

4 Un- equally spread, 3 disconnected regions, un equally 
spread regions 

RASAMO with RBFcube  
model 

5 Equally spread, 4 disconnected regions, equally spread, 

ASAMO Singe best 
surrogate  model 

7 Equally spread  2 disconnected regions, un equally spread 
regions 

RASAMO Singe best 
surrogate 

8 Equally spread, 4 disconnected regions, equally spread, 

Best mixture surrogate  
model 

10 Un- equally spread, 3 disconnected regions, un equally 
spread regions 

RASAMO with Best 
mixture surrogate 

11 Equally spread, 4 disconnected regions, equally spread, 
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Fig. 6: comparison of Non dominated solution for RASAMO algorithm for RBF cube surrogate 
model  with and without Target  value strategy 

 

Fig. 7: Non dominated solution for ASAMO algorithm for Single best surrogate model 

 

Fig. 8: Non dominated solution for RASAMO algorithm for Single best surrogate model with 
target value strategy 
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Fig. 9. Comparison of Non dominated solution for RASAMO algorithm for Single best surrogate 
model  with and without Target  value strategy 

 

Fig. 10: Non dominated solution for ASAMO algorithm for Best mixture surrogate model 

 

Fig. 11: Non dominated solution for RASAMO algorithm for Best mixture surrogate model with 
target value strategy 



2384| Shailesh S. Kadre                                               Refined Advanced Surrogate Assisted Multi-Objective Optimization  
        Algorithm- RASAMO 

 

Fig. 12: comparison of Non dominated solution for RASAMO algorithm for Best mixture  
surrogate model  with and without Target  value strategy 

Similar study is performed for the single best (Figures 7 to 9)  and best mixture surrogate models 
(Figures 10 to 12). In all the cases, the RASAMO algorithm results in equally spaced diversified 
non- dominated solutions. Performance of RASAMO algorithm with single best surrogate model is 
found to be best amongst all types of surrogate models. 

Table 3 compares the performance metrics (NHV and spread) at 400 number of costly function 
evaluations. Figures 13 and 14 show the NHV and spread performance parameters of RASAMO 
algorithms for various number of costly function evaluations. RBFcube surrogate models are 
developed for the ASAMO and RASAMO algorithms. These surrogate models are used for target 
value strategy also. As explained earlier, higher NHV value of non- dominate solutions is preferred 
for better convergence and diversity of the solutions. Algorithm with lower spread value of Pareto - 
front solution is preferred. The effect of target value strategy with RBFcube surrogate model 
results into 3% increase in NHV value and 12.6% decrease in spread value for 400 n umber of costly 
function evaluations. In cases where prior information regarding the best type of surrogate models 
for a type of problem is not available, strategy of selection of best surrogate model is found to be 
very useful. 

Table 3: Performance metrics (NHV and spread) at 400 number of costly function evaluations. 
Type of surrogate model NHV value Spread value 

ASAMO- RBF Cube Model 0.410791 1.063897 
RASAMO- RBF Cube Model-Target Value 0.42364 0.929900 
% Improvement 3.1% -12.6% 
ASAMO- Single Best Model 0.416319 1.002770 
RASAMO- Single Best Model- Target Value 0.422671 0.917437 
% Improvement 1.5% -8.5% 
ASAMO- Best Mixture Model 0.417925 0.962065 
RASAO- Best Model- Target Value 0.420041 1.025527 
% Improvement 0.5% 6.6% 
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Fig. 13: Effect of target value strategy on NHV for RASAMO algorithm for RBFcube surrogate 
models 

 

Fig. 14 : Effect of target value strategy on Spread for RASAMO algorithm for RBFcube 
surrogate models 

Figures 15 to 16 show the performance comparison of target value strategy  on the NHV and 
spread for RASAMO algorithm with single best surrogate models. From the study of these 
figures, it can be observed that there is a 1.5% improvement in NHV value and 8.5% reduction 
of spread value at 400 numbers of costly function evaluations. Figures 17 to 18 display the 
effect of target value strategy of RASAMO algorithm with best mixture surrogate models. For 
this configuration, there is only a marginal improvement in the NHV property for target value 
strategy. For best  mixture surrogate models, already convergent solutions are obtained and 
there is no further scope of improvement for the target value strategy.  

 

Fig. 15:  Effect of target value strategy on NHV for RASAMO algorithm for single best surrogate 
models 
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Fig. 16:  Effect of target value strategy on Spread for RASAMO algorithm for single best 
surrogate models 

 

Fig. 17:  Effect of target value strategy on NHV for RASAMO algorithm for  best mixture 
surrogate models 

 

Fig. 18:  Effect of target value strategy on Spread  for RASAMO algorithm for  best mixture 
surrogate models 

 

VII. CONCLUSION AND SCOPE FOR FUTURE WORK 

The comparison of various performance metrics for the ASAMO and RASAMO algorithms clearly 
shows the improvement in convergence and divergence property of the fina l Pareto- Front 
solutions for same number of costly function evaluations. This means that RASAMO is effective in 
finding the better solutions with less number of expensive function evaluations. The new algorithm 
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is successfully applied on the complex engineering application problems with multiple objectives 
and several continuous and discrete variables. The nature of the constraints is also non - linear in 
nature. The suggested changes in the original target value strategy such as development of 
advanced surrogate models and addition of multiple points per optimization cycle has resulted into 
enhancement of overall efficiency of RASAMO algorithm to solve MOOP problems. 

In cases where the prior knowledge of the suitability of surrogate model for a particular p roblem 
type is not available, the strategy of creation and selection of single best surrogate model has bee n 
found to be effective for RASAMO algorithm. From this study, it is evident that addition of multiple 
points per optimization cycle result into faster convergence. There are multiple other parameters 
affecting the performance of RASAMO algorithm. Their effect is required to be determined on the 
effectiveness of suggested improvements. In addition to target value strategies , there are numerous 
other techniques to improve the quality of non- dominated solutions of any MOOP solving 
algorithms. 

Nomenclatures 

 

Objective Function 

M Number of objective functions 

 

Constraint functions, where  i is the constraint number (J) 

V Number of design variables 

X Variable vector 

 Surrogate model of objective function 

 Surrogate model of constraint function 

Abbreviations 

MOOP Multi – Objective Optimization Problem 

ASAMO Advanced Surrogate Assisted Multi-Objective Algorithm 

SOCEMO Surrogate Optimization of Computationally Expensive Multi-
objective Problems 

DOE Design of Experiments 

DST Dempster-Shafer Theory 

MATSuMoTo Matlab based Surrogate Model Toolbox 

EMO Evolutionary Multi Objective Algorithm 

EA Evolutionary Algorithm 

NHV Normalized Hyper Volume 
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