

Modeling & Analysis Of Boiler Drum Control System Using Petri Nets

R.Chithrakkannan¹, sri sairam Engineering college;

T.Mangayarkarsi², _sri sairam Engineering;

R.Karthikeyan³, sri sairam Engineering

Abstract—The aim behind this paper is to dev**@bp** theiler drum system considered in this paperuses Petri Net unique model for analyzing the fail safe condition and performance of the boiler drum section using Petri Nets. The structural and behavioural properties of the developed Petri net models serves as a tool for model checking and redundancy checking which are essential verify the correctness of boiler drum dynamics. This is followed by the validation and performance evaluation of the developed model .The developed model helps in providing safety analysis during operation .The mathematical and graphical results obtained from the developed system helps inunderstanding and analyzing the characteristics of entire boiler drum section

Index Terms— Stochastic Petri Nets, Fail Safe Model, ModelAnalysis

Introduction

Due to the advancement of Technology in Science and need for automation there has always been a thrust to improve the capability of boiler drum section in power plants. Petri Nets combine a well-defined mathematical theory with a graphical representation of the dynamic behavior of the systems. Modeling & Analysis of the furnace is very much essential for improving the safety of risk in critical processes. Different approaches have been developed in analyzing the drum model for the past few years, depending on the kind of knowledge used to describe the dynamic process. Modeling is the most important step, since the model based approaches mainly consists of comparison between the actual behavior of the system with the reference behaviors describing the normal operation(fail safe model) and modeling using Petri nets. Once the model is built, redundancy of the model can be checked by using Petri Nets. The model can be developed by considering the complete logical based approach in developing the furnace model using Petri Nets.

In this regard, the concept of the fail safe model plays a major role in indicating and informing about something which is going wrong in the monitored system of any process. Hence, for personal and system safety, detection and isolation have become a prime concern in many Industries. Many different approaches have been dealt in achieving the fail safe and modeling of the boiler drum control system.

6780 | R.ChithrakkannanModeling & Analysis Of Boiler Drum ControlSystem Using Petri Nets

soft wares like HpSim for developing a fail -safe and SIRPHYCO for developing a model for performance evaluation. The HpSim and SIRPHYCO soft wares uses places, transitions and tokens for developing the fail-safe model and a model for the performance evaluation respectively.

2. SYSTEM DESCRIPTION

The design of the boiler drum model is based on the concept of the discrete and continuous Petri Nets. A Petri net(PN) has two types of nodes, namely places and transitions. A place is represented by a circle and a transition by a bar. Places and transitions are connected byarcs. The number of places is finite and not zero. The number of transitions is also finite and not zero. An arc is directed and connects either a place to a transition or a transition to a place.

In other words, a PN is a bipartite graph, i.e, places and transitions alternate on a path made up of consecutive arcs. It is compulsory for each arc to have a node at each of its ends. A transition without an input place is a source transition. A transition without an output place is a sink transition.

3. SYSTEM MODELING

As mentioned in the earlier section, the system modeling is done by using Petri Nets, considering the whole process as a continuous event system. The presence of a token in a place denotes the condition for starting an operation or event, firing a transition denotes the start of the event and movement of the token from one place to another represents condition after the operation or event is

6781 | R.Chithrakkannan System Using Petri Nets Modeling & Analysis Of Boiler Drum Control

completed.

DESCRIPTION OF THE MODEL

The description of the boiler drum model is performed easily with the help of the Petri nets. The set pointor the desired value is being given by the tokens in the place P1.The tokens from the place P1 is being passed to the drum level control denoted by place P2 where the drum level is checked with the desired value. If the drum level value is less than the set point then the input flow valve(P3) is ON and the output flow valve(P4) is OFF. If the drum level is greater than the set point value then the input flow valve (P3) is ON.

TABLE-I

S.No	PLACES/	CONDITIONS
	TRANSITIONS	
1.	P1	Initialize the set point value
2.	T1	To enable tokens to be passed
		from place P1 to P2(set point
		to the drum level control)
3.	T2	To check if the drum level is
		<set point<="" td=""></set>
4.	P2	To open the input valve for
		increasing the input flow.
5.	P3	To open the output valve for
		bringing to the desired value.
6.	T3	To check if the drum level is
		> set point.

DESCRIPTION OF PLACES /TRANSITIONS AND CONDITIONS FOR THE MODEL

6782 | R.Chithrakkannan System Using Petri Nets **Modeling & Analysis Of Boiler Drum Control**

4-GRAPHICAL RESPONSE

From the above graphical output, we can conclude that

i) If the value of the drum level is < set point, then the drum level controller takes action and the input valve isopened and the output valve is closed.

ii)If the value of the drum level is >set point, then the drum level controller takes action and the input valve is closed and the output valve is opened.

5. FAIL SAFE MODEL OF THE DRUM SECTION OF THE BOILER

This section describes the methods of developing the fail safe model of the boiler drum section and the conditions for the fail safe operation of the boiler.

5.1 Fail Safe Model

The boiler drum is very much needed for the proper working of the boiler and to make it operate smoothly and efficiently. Thus, a fail safe model is very much essential for the proper design of the boiler drum by choosing of the appropriate variables required for the boiler drum and ensuring the normal operation of the boiler.

5.2 Fail Safe Monitoring Algorithm

With regard to the drum section of the boiler and modeling of the boiler drum section in its equivalent Petri Net environment, the following criterion is adopted.

STEP1: Set the tokens in the place P1 considering it as the normal place.

STEP2: Now the controller checks if the level of the drum

STEP 3: If the level of the drum is < 5 then the furnace is passed to the OFF position and the feed water is passed to the ON position.

STEP4: If the level of the drum is> 25 then the feed water valve is passed to the OFF position and the furnace to theon position.

Fig:

6-PN TOOL:

The Petri Net Toolbox (PN Toolbox) version 2.0 is a software tool for simulation, analysis and design of discrete event systems, based on Petri net (PN) models. This software is embedded in the MATLAB environment and its usage requires version 6.0 or higher. The orientation of the PN Toolbox was meant to permit further development in the sense of hybrid systems, because MATLAB incorporates comprehensive libraries for studying continuous and discontinuous dynamics. Such a development, of extreme importance for control engineering, would be hardly approachable relying on the already existing PNs packages as requiring sophisticated interfaces for the cooperation with instruments devoted to the exploration of continuous dynamics with the models developed in the recent yearsmainly with reference to the boiler models.

INCIDENCE MATRIX:

The incidence matrix suffices to characterize the relative change of tokens for every place when a transition fires.

COVERABILITY GRAPGH:

6784 | R.Chithrakkannan Modeling & Analysis Of Boiler Drum Control System Using Petri Nets The coverability tree is a tree representation of all possible markings . If the net is unbounded then the tree is kept finite by introducing the symbol ω .

Fig. 2. Example of an unacceptable low-resolution image

						(overa	bility T	ree - T	ext M	ode						
rom	Fired	Te	From	Fired	To	Freen	Fired	To	From	Fued	To	From	Fired	To	Frem	Fired	To
140	15	M1	140	16	M2	Mi	t2	M3	MI	54	M4	M2	13	MS	M2	t7	M6
M3	tl	M7	M3	64	M8	M4	t2	M9	M4	6	M10	M4	t6	M11	M5	6	MI2
M5	t6	M13	M5	e	MI4	M6	tl	M15	M6	ß	M8	М7	14	M16	M7	6	MI7
M7	t6	M18	MS	tl	M19	M8	15	M20	M8	86	M21	M9	t1	M22	349	12	M9
M9	t5	M23	M9	16	M24	M10	t2	M23	MIO	84	M4	M11	t2	M24	MII	13	M25
M11	t7	M26	MI2	12	M27	M12	t4	M25	M12	ŧ7	M28	M13	t3	M5	M13	ŧ7	M29
M14	t1	M30	M14	в	M28	M14	t6	M29	M14	ŧ7	M14	M15	t3	M31	M15	15	M32
M15	t6	M33	M16	14	M16	M16	t5	M34	M16	86	M35	M17	t2	M36	M17	14	M37
M18	t3	M38	MIS	14	M39	M18	t7	M40	M19	tl	M19	M19	15	M41	M19	t 6	M42
M20	t1	M43	M20	12	M44	M20	t4	249	M21	tl	345	M21	13	M14	M21	17	M46
M22	t1	M22	M22	+2	M22	M22	15	M41	M22	86	M47	M23	tl	M43	M23	t2	M23
M23	14	M9	M24	tl	M48	M24	12	M24	M24	ß	349	M24	17	M50	M25	12	M49
M25	15	M51	M25	16	M52	M25	t7	M49	M26	tl	M53	M26	12	M50	M26	63	M9
M27	t1	M38	M27	54	MI4	M27	t7	M54	M28	tl	M55	M28	12	M54	M28	14	M49
M28	t7	M28	M29	tl	M45	M29	t3	M14	M29	t 7	M29	M30	tl	M30	M30	15	M56
M30	t6	M42	M30	£7	M30	M31	t3	M31	M31	6	M57	M31	t6	M58	ME32	12	M59
M32	t3	M60	M32	64	M53	M33	13	M61	M33	t7	M62	M34	12	M41	M34	64	M34
M34	б	M34	M34	16	M63	M35	t3	M35	M35	64	M35	M35	15	M63	M35	t 6	MB5
M35	t7	M64	M36	tl	M7	M36	14	M65	M37	12	M43	M37	14	M34	M37	15	M66
M37	t6	M67	M38	14	M68	M38	t5	M69	M38	16	M70	M38	17	M71	M39	в	MB5
1620	1 +A	1/26	3.020		3.075	M20	16	1.012	3 120	-7	3.874	3640	1+1	MAK	3.740	• •	1.00
l etar						1 Martin			week and						1.0		No. 1

COVERABILITY TREE TEXT MODE:

GLOBAL STATISTCS OF TRANSITIONS

The global statistics of the transitions involves up in the entirer global data of all the transitions that have been involved in firing.

	Ck	hal Statistics: Tr	onsitions		
	Giù	Juan Statistics: 11	ansmons		
ailsafe of drum and					
147					
142					
3885					
Transition Name	Service Sum	Service Rate	Service Dist.	Service Tune	Unlizatio
tt	24	2.7623	0.36202	0.065883	0.1819
	20	2.3019	0.43443	0.048398	0.1114
12		1 9566	0.51109	0.068973	0.1349
12	17	1.2.200			
12 13 14	17	1.8415	0.54303	0.034148	0.06288
12 13 14 15	17 16 27	1.8415	0.54303	0.034148	0.06288
12 13 14 15 16	17 16 27 23	1.8415 3.1075 2.6472	0.54303 0.3218 0.37776	0.034148	0.06288

CONCLUSION

GLOBAL STATISTCS OF PLACES

The global statistics of the places involves up in the entire global data of all the places that have been involved inpassing of tokens to other places.

Truce Towne	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Lengt
p1	8	1.7512	0.57104	7	1.5323	0.65262	0.74226	1.1373
p2	3	0.65669	1.5228	3	0.65669	1.5228	0.31347	0.20585
p3	5	1.0945	0.91367	2	0.4378	2 2842	1.9751	0.86469
p4	5	1.0945	0.91367	4	0.87559	1.1421	1.0136	0.8875
p5	2	0.4378	2.2842	1	0.2189	4.5683	1.2999	0.28454
p6	2	0.4378	2.2842	1	0.2189	4.5683	1.6566	0.36264

The version of this template is V3. Most of the formatting instructions in this document have been compiled by Causal Productions from the IEEE LaTeX style files. Causal Productions offers both A4 templates and US Letter templates for LaTeX and Microsoft Word. The LaTeX templates depend on the official IEEEtran.cls and IEEEtran.bst files, whereas the Microsoft Word templates are self-contained. Causal Productions has used its best efforts to ensure that the templates have the same appearance.

Causal Productions permits the distribution and revision of these templates on the condition that Causal Productions is credited in the revised template as follows: "original version of this template was provided by courtesy of Causal Productions (www.causalproductions.com)".

ACKNOWLEDGMENT

The heading of the Acknowledgment section and the References section must not be numbered.

6786 | R.Chithrakkannan Modeling & Analysis Of Boiler Drum Control System Using Petri Nets Causal Productions wishes to acknowledge Michael Shell and other contributors for developing and maintaining the IEEE LaTeX style files which have been used in the preparation of this template. To see the list of contributors, please refer to the top of file IEEETran.cls in the IEEELaTeX distribution.

MARKINGS:

M[p1,p2,p3,p4,p5,p6]

M0 = [1,0,0,0,0,0] M1 = [0,0,0,0,1,1]
M2 = [0,0,1,1,0,0] M3 = [0,1,0,0,0,1]
$M4 = [1,0,0,0,\omega,0] M5 = [$	1,0,ω,0,0,0]
M6 = [0,1,0,1,0,0] M7 = [1,0,0,0,0,ω]
$M8 = [1, \omega, 0, 0, 0, 0] M9 = [$	1,ω,0,0,ω,0]
$M10 = [0,0,0,0,\omega,1]$	$M11 = [0,0,1,1,\omega,0]$
M12 = [0,0,ω,0,1,1]	M13 = $[0,0,\omega,1,0,0]$
$M14 = [1, \omega, \omega, 0, 0, 0]$	M15 = [1,0,0,ω,0,0]
M16 = $[\omega, 0, 0, 0, 0, \omega]$	M17 = $[0,0,0,0,1,\omega]$
M18 = $[0,0,1,1,0,\omega]$	M19 = $[\omega, \omega, 0, 0, 0, 0]$ M20 = $[0, \omega, 0, 0, 1, 1]$

REFERENCES

- [1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
- [2] J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
- [3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, "A novel ultrathin elevated channel low-temperature poly-Si TFT," IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
- [4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, "High resolution fiber distributed measurements with coherent OFDR," in Proc. ECOC'00, 2000, paper 11.3.4, p. 109.
- [5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, "High-speed digital-to-RF converter," U.S. Patent 5 668 842, Sep. 16, 1997.
- [6] (2007) The IEEE website. [Online]. Available: http://www.ieee.org/
- [7] M. Shell. (2007) IEEEtran webpage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/
- [8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
- [9] "PDCA12-70 data sheet," Opto Speed SA, Mezzovico, Switzerland.
- [10] A. Karnik, "Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP," M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
- [11] J. Padhye, V. Firoiu, and D. Towsley, "A stochastic model of TCP Reno congestion avoidance and control," Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
- [12] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.

6787 | R.Chithrakkannan Modeling & Analysis Of Boiler Drum Control System Using Petri Nets