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Abstract: 

In smart cities, vehicular ad-hoc networks (VANETs) will play an important role with the 

development of security and smart vehicle video surveillance services. With the smart 

components, multimedia communication drivers over VANETs allow passengers to 

capture live scenes, share and access on-wheel multimedia services. In this study, I 

present an application that provides multiple services in a smart city VANET. I suggest 

Since, the main concern of video streaming transmission in such a highly dynamic 

environment is to increase the quality of experience (QoE). The massive growth of Big 

Data and the evolution of Internet of Things (IoT) technologies enable cities to gain 

valuable intelligence from large amounts of real-time generated data. In a smart city, 

various IoT devices sequentially generate streams of data that need to be analyzed in a 

short period of time; Some use big data techniques. Distributed Stream Processing 

Framework (DSPF) has the ability to handle real-time data processing for smart cities. 

According to our results, selecting a proper structure in the data analytics layer of a smart 

city requires sufficient knowledge about the characteristics of the target applications. The 

Internet of Vehicles( IoV) enabled vehicles to exchange information with roadside units 

(RSU) with minimum or zero human intervention. This autonomous nature of IoV 

requires strong authentication for each entity to recognize each other, as well as these 

entities, should ensure the integrity of the exchanged information. Otherwise, this 

autonomy will attract malicious users and malicious activity. Due to the dynamic nature 

of the IoV network, it is almost impossible to solve the Cyber Security issue with the 

centralized authentication system throughput. 

Key Words: smart cities, VANET, quality of experience (QoE), Internet of Things (IoT), 

Distributed Stream Processing Framework (DSPF) 

Introduction 

Nowadays, data streams occur in many real-world situations. For example, they are 

developed for sensors, web traffic, satellites and other interesting use cases. We need to 

process them in a fast manner and extract as much knowledge from them as possible. 

Data streams have their own specific characteristics for processing and data mining. For 

example, they can be very fast, we cannot process the entire history of the data stream in 

memory, so we have to do it incrementally or in (eg sliding) windows. 

In this post, I will cover a data stream clustering method that was developed by me. In R, 

you can do data stream clustering by stream package, but! There are methods for 
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clustering only one stream (not multiple streams). However, I want to show you the 

clustering of multiple data streams, so from multiple sources (eg sensors). 

I have developed a clustering method adapted for time series streams - known as 

ClipStream . This approach is attribute based, so multiple attributes (features) are 

collected from multiple stream windows. You can read more about it from my journal 

paper. 

I will show you the use case of smart meter data - time series of electricity consumption 

(consumer) from London (openly available here). The motivation for clustering such data 

is: 

1. Find out the general pattern of costs, 

2. Detecting outliers, 

3. Unsupervised Classification of Consumers, 

4. Create more predictable groups of time series, 

5. Change and monitor behavior. 

The motivation for processing them as streams is that power consumption (or 

production) data is measured every 5, 15 or 30 minutes. 

Clipstream has the following steps (very briefly): 

1. Computing data stream representation (reduced dimensionality) for each stream – eg 

summary, 

2. Identify external (extraordinary) flows directly from the extracted representation, 

3. Cluster non-outlier representation by K-medoids, 

4. Assign the outlier stream to the nearest cluster (medoid), 

5. Total time by cluster 

On the other hand, the Internet of Things (IoT) is becoming the primary grounds for data 

mining and Big Data analytics. With the rapid growth of IoT and its use cases in different 

domains such as Smart City, Mobile e-Health and Smart Grid, streaming applications are 

driving a new wave of data revolutions. In most IoT applications the resulting analytics 

give some feedbacks to the system to improve it. Compared to the other Big Data domains, 

there is a low-latency cycle between system responses which makes it necessary to 

process events in real-time, to derive acceptable responsiveness. In all of these domains, 

one of the most fundamental challenge is to explore the large volumes of data and extract 

useful information for future actions. In particular, this real-time exploration has to be 

done at massive scales. 

Nowadays generated data in IoT era have several characteristics that put them in the 

class of Big Data. Smart cities follow four steps to improve the quality of life and enable 
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economic growth through a network of connected IoT devices and other technologies. 

These steps are as follows: 

1. Collection – Smart sensors gather real-time data 

2. Analysis – The data is analysed to gain insights into the operation of city services and 

operations 

3. Communication – The results of the data analysis are communicated to decision 

makers 

4. Action – Action is taken to improve operations, manage assets and improve the quality 

of city life for the residents 

The ICT framework brings together real time data from connected assets, objects and 

machines to improve decision making. However, in addition, citizens are able to engage 

and interact with smart city ecosystems through mobile devices and connected vehicles 

and buildings. By pairing devices with data and the infrastructure of the city, it is possible 

to cut costs, improve sustainability and streamline factors such as energy distribution 

and refuse collection, as well as offering reduced traffic congestion, and improve air 

quality. 

BIG DATA PLATFORM: 

A big data platform acts as an organized storage medium for large amounts of data. Big 

data platforms utilize a combination of data management hardware and software tools to 

store aggregated data sets, usually onto the cloud. 

Google Cloud offers lots of big data management tools, each with its own specialty. 

BigQuery warehouses petabytes of data in an easily queried format. 

Users can analyze data stored on Microsoft’s Cloud platform, Azure, with a broad 

spectrum of open-source Apache technologies, including Hadoop and Spark. 

Best known as AWS, Amazon’s cloud-based platform comes with analytics tools that are 

designed for everything from data prep and warehousing to SQL queries and data 

lake design. All the resources scale with your data as it grows in a secure cloud-based 

environment. Features include customizable encryption and the option of a virtual 

private cloud. 

Snowflake is a data warehouse used for storage, processing and analysis. It runs 

completely atop the public cloud infrastructures — Amazon Web Services, Google Cloud 

Platform and Microsoft Azure — and combines with a new SQL query engine. Built like a 

SaaS product, everything about its architecture is deployed and managed on the cloud. 

VANET: 

VANET (Vehicular Ad-hoc Networks) has become a promising field of research and is an 

important component of Intelligent Transportation Systems (ITS). The dramatic increase 
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in the number of vehicles equipped with computing technologies and wireless 

communication devices have given way to new application scenarios that were not 

feasible before. In this era of modern technology, the Internet of Vehicles (IoV) is an 

emergent technology. The IoV augments ITS by magnifying the capabilities of VANETs 

riding on the concept of the Internet of Things (IoT). IoV enabled vehicles to exchange 

information with roadside units (RSU) with minimum or zero human intervention. This 

autonomous nature of IoV requires strong authentication for each entity to recognize 

each other, as well as these entities, should ensure the integrity of the exchanged 

information. Otherwise, this autonomy will attract malicious users and malicious activity. 

Due to the dynamic nature of the IoV network, it is almost impossible to solve the Cyber 

Security issue with the centralized authentication system. 

 

Ad Hoc Network Features: 

Infrastructureless network: Like other network, it doesn’t require centralized controlling 

authority, routers, and physical medium for transmitting data. 

Nodes in the network can be mobile: Nodes can be stationary or nodes in the network 

have freedom to move in the communication range of network nodes. If all nodes are 

moving with a constant speed in the range of each other, connection can remain without 

interruption. In some cases, every node moves at a different speed, which can be 

connected and disconnected from the network. 

Each node acts as a router and takes the decision of forwarding the packets: Nodes in the 

network themselves play a role of router. Nodes either send their own messages or 
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forward another node messages to destination nodes. Route-finding process is initiated 

when a particular message is sent by the source node. Nodes in the network have 

individual or group strategy for forwarding messages. 

No centralized controlling authority: In other wireless network, behaviors of nodes in the 

network are controlled by centralized controlling authority. In the case of ad hoc 

network, there is no centralized controlling authority. 

Flexible in nature, can establish, and can dissolve as nodes move: As nodes in the network 

can move, they result in formation and deformation of network from time to time. 

 

Vehicular Ad Hoc Networks (VANETs) are characterized by high mobility of nodes and 

volatility, which make privacy, trust management, and security challenging issues in 

VANETs' design. In such networks, data can be exposed to a variety of attacks, the most 

dangerous is false information dissemination, which threatens the safety and efficiency 

of transportation systems. False emergency messages can be injected by inside attackers 

to announce fake incidents such as traffic accidents, resulting in a false information 

attack. As the data in VANET is based on events, any trust mechanism must first identify 

the true events. To address these security challenges, a blockchain-based authentication 

scheme and trust management model are proposed for VANETs. Using the authentication 

scheme, vehicles are enabled to send messages anonymously to the roadside units (RSUs) 

and the identity privacy of vehicles is protected. Besides, the proposed trust management 

model is designed to detect and deal with false information by evaluating the 

trustworthiness of vehicles and data. Using the trust model, when vehicles report an 

incident to the nearest RSU, the RSU is able to verify whether or not the incident took 

place. This mechanism ensures that RSUs send only verified event notifications. Finally, 

RSUs participate in updating the trust values of vehicles and store these values in the 

blockchain. The efficiency of the proposed authentication scheme is validated through 

analysis while the trust model is validated through simulations. The results obtained 

show that the proposed authentication scheme and the trust model provide better 
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performance than other state-of-the-art models where malicious vehicles can be 

identified efficiently and RSUs are enabled to broadcast only legitimate events. 

 

Abbreviations 

IoT: 

Internet of Things 

DSPF: 

distributed stream processing framework 

RFID: 

Radio Frequency IDentification 

HDFS: 

Hadoop Distributed File System 

API: 

application programming interface 

DB: 

database 

JSON: 

JavaScript Object Notation 

DAG: 

directed acyclic graph 

ETL: 

extract, transform, load 
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CEP: 

Complex Event Processing 

ML: 

machine learning 

IVP: 

Image and Video Processing 

Evalution: 

I will show you use case on smart meter data - electricity consumption time series 

(consumers) from London ( openly available here). Motivation for clustering such a data 

is to: 

extract typical patterns of consumption, 

detect outliers, 

unsupervised classification of consumers, 

create more forecastable groups of time series, 

monitor changes and behavior. 

The motivation to process them as streams is the fact that the data of electricity 

consumption (or production) are measured every 5, 15 or 30 minutes. 

ClipStream has following steps (very briefly): 

computing data streams representation for every stream (dimensionality reduction) - i.e. 

synopsis, 

detect outlier (anomal) streams directly from extracted representations, 

cluster non-outlier representations by K-medoids, 

assign outlier streams to nearest clusters (medoids), 

aggregate time series by clusters, 

detect changes in aggregated time series. 

In this post, I will mainly focus on the first 4 parts of my approach, since there are 

applicable to various use cases - not only on smart meter data and its forecasting. The 

whole method is developed in unsupervised fashion (yey!), 

so representation, clustering and outlier detection of time series streams are “learned” 

unsupervised. 

Data exploration 
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Firstly, read the London smart meter data, which compromise more than 4000 

consumers and load all the needed packages. 

library(data.table) 

library(parallel) 

library(cluster) 

library(clusterCrit) 

library(TSrepr) 

library(OpenML) 

library(ggplot2) 

library(grid) 

library(animation) 

library(gganimate) 

library(av) 

data <- OpenML::getOMLDataSet(data.id = 41060) 

data <- data.matrix(data$data) 

Let’s subset first 1000 consumers for more simple operations. 

data_cons <- data[1:1000,] 

period <- 48 # frequency of time series, every day 48 measurements are gathered 

Let’s plot random consumer for better imagination. 

ggplot(data.table(Time = 1:ncol(data_cons), 

                  Value = data_cons[200,])) + geom_line(aes(Time, Value)) + 

  labs(y = "Consumption (kWh)") + theme_ts 
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We can see stochastic behavior, but also some consumption pattern. 

We can plot, for example, its average daily or weekly profile. We will do it by TSrepr’s 

package function repr_seas_profile. 

ggplot(data.table(Time = 1:period, 

    Value = repr_seas_profile(data_cons[200,], freq = period,func = mean))) + 

  geom_line(aes(Time, Value)) + geom_point(aes(Time, Value), alpha = 0.8, size = 2.5) + 

  scale_x_continuous(breaks = seq(1, 48, 6),  labels = paste(seq(0, 23, by = 3), "h", sep = 

"")) + labs(y = "Consumption (kWh)") + theme_ts 

 

The peak at the start of a day… 

Now, let’s plot weekly pattern: 

ggplot(data.table(Time = 1:(period*7),  Value = repr_seas_profile(data_cons[200,],  freq = 

period*7, func = mean)))  

geom_line(aes(Time, Value), size = 0.8) + 

https://cran.r-project.org/package=TSrepr
https://cran.r-project.org/package=TSrepr
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  geom_vline(xintercept = (0:7)*period, color = "dodgerblue2", 

             size = 1.2, alpha = 0.7, linetype = 2) +  labs(y = "Consumption (kWh)") + theme_ts 

 

There is some change during a week. 

Let’s explore the whole consumer base, but how when we have more than 1000 time 

series? We can cluster time series and just plot its daily patterns for example by created 

clusters. We will reduce the length of the visualized time series and also a number of time 

series in one plot. 

First, extract average daily patterns, we will make it by repr_matrix function from TSrepr. 

Normalization of every consumer time series - row-wise by z-score is necessary! You can 

use your own normalization function (z-score and min-max methods are implemented). 

data_ave_prof <- repr_matrix(data_cons, func = repr_seas_profile,args = list(freq = period, 

                             func = median),normalise = TRUE, 

                             func_norm = norm_z) 

Let’s cluster computed mean daily profiles for example by K-means and to 12 clusters: 

res_clust <- kmeans(data_ave_prof, 12, nstart = 20) 

Preprocess clustering results with data.table package and plot them: 

data_plot <- data.table(melt(data_ave_prof)) 

data_plot[, Clust := rep(res_clust$cluster, ncol(data_ave_prof))] 

 data_centroid <- data.table(melt(res_clust$centers)) 

data_centroid[, Clust := Var1] 

ggplot(data_plot) + 

  facet_wrap(~Clust, scales = "free", ncol = 3) + 
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  geom_line(aes(Var2, value, group = Var1), alpha = 0.7) + 

  geom_line(data = data_centroid, aes(Var2, value, group = Var1), 

   alpha = 0.8, color = "red", size = 1.2) +  scale_x_continuous(breaks = c(1,seq(12, 48, 12)), 

 labels = paste(seq(0, 24, by = 6), "h", sep = "")) + theme_ts 

 

Various interesting patterns of daily consumption! 

BUT (here comes motivation)! When we would like to cluster just most recent data (for 

example 2-3 weeks), and update it regularly every day (or even thought half-hour), 

automatically detect changes in time series streams and detect anomalies (outlier 

consumers), detect automatically the number of clusters, and make it as quickly as 

possible… We can not do it like in the previous case, because of computational and 

memory load and also accuracy. Here comes on screen more sophisticated multiple data 

streams clustering methods. In ClipStream that uses FeaClip time series streams 

representation (see my previous post about time series represetnations), a 

representation can be computed incrementally, clusterings are computed in data batches, 

outliers are detected straight from representation and etc. 

FeaClip is interpretable time series representation. It extracts 8 interpretable features 

from clipped representation (again please see the mentioned blog post). Let’s plot 

representation from one day consumption time series: 

ts_feaclip <- repr_feaclip(data_cons[1, 1:48]) 

 define_region <- function(row, col){ 

  viewport(layout.pos.row = row, layout.pos.col = col) 

} 
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 gg1 <- ggplot(data.table(Consumption = data_cons[1, 1:48],Time = 1:48)) + 

  geom_line(aes(Time, Consumption)) + 

  geom_point(aes(Time, Consumption), size = 2, alpha = 0.8) + 

  geom_hline(yintercept = mean(data_cons[1, 1:48]), color = "red", size = 0.8, linetype = 

7) + 

  theme_ts 

 gg2 <- ggplot(data.table(Count = ts_feaclip, Time = 1:8)) + geom_line(aes(Time, Count)) 

+ 

  geom_point(aes(Time, Count), size = 2, alpha = 0.8) + 

  scale_x_continuous(breaks = 1:8, labels = names(ts_feaclip)) + theme_ts 

 grid.newpage() 

pushViewport(viewport(layout = grid.layout(2, 1))) 

print(gg1, vp = define_region(1, 1)) 

print(gg2, vp = define_region(2, 1)) 

 

Let’s compute it also for consumption of length 2 weeks - by windows. 

win <- 14 

ts_feaclip_long <- repr_windowing(data_cons[1, 1:(period*win)], 

                                  func = repr_feaclip, win_size = period) 
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 means <- sapply(0:(win-1), function(i) mean(data_cons[1, 

((period*i)+1):(period*(i+1))])) 

means <- data.table(Consumption = rep(means, each = period), 

                    Time = 1:length(data_cons[1, 1:(period*win)])) 

 gg1 <- ggplot(data.table(Consumption = data_cons[1, 1:(period*win)], 

                         Time = 1:(period*win))) + 

  geom_line(aes(Time, Consumption), alpha = 0.95) + 

  geom_vline(xintercept = seq(from=period,to=(period*win)-period, by=period), 

             alpha = 0.75, size = 1.0, col = "dodgerblue2", linetype = 2) + 

  geom_line(data = means, aes(Time, Consumption), color = "firebrick2", 

            alpha = 0.8, size = 1.2, linetype = 5) + 

  labs(y = "Consumption (kWh)", title = NULL, x = NULL) + 

  scale_x_continuous(breaks=seq(from=period/2, to=(period*win), by = period), 

                     labels=c(1:win)) +theme_ts 

 gg2 <- ggplot(data.table(Count = ts_feaclip_long, 

                         Time = 1:length(ts_feaclip_long))) + 

  geom_line(aes(Time, Count)) + 

  geom_vline(xintercept = seq(from=8,to=(8*win)-8, by=8), 

             alpha = 0.75, size = 1.0, col = "dodgerblue2", linetype = 2) + 

  # geom_point(aes(Time, Count), size = 2, alpha = 0.8) + 

  scale_x_continuous(breaks=seq(from=8/2, to=(8*win), by = 8), 

                     labels=c(1:win)) + 

  labs(title = NULL, x = "Day") + theme_ts 

grid.newpage() 

pushViewport(viewport(layout = grid.layout(2, 1))) 

print(gg1, vp = define_region(1, 1)) 

print(gg2, vp = define_region(2, 1)) 
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We can see the typical pattern during working days and some changes when consumption 

goes high - the representation adapts to these changes, but not drastically - because of 

the average of a window (normalization). 

FeaClip animation 

Now, let’s play a little bit with gganimate and av packages and visualize the behavior of 

FeaClip through time (stream). 

First, prepare whole one time series as a stream. 

# Representation 

data_feaclip_all <- repr_windowing(data_cons[1,], 

                                   func = repr_feaclip, 

                                   win_size = period) 

win <- 14 

win_size <- 14*8 

n_win <- length(data_feaclip_all)/8 - win 

data_feaclip_all_anim <- sapply(0:(n_win - 1), function(i)  

  data_feaclip_all[((i*8)+1):((i*8) + win_size)]) 

data_feaclip_all_anim <- data.table(melt(data_feaclip_all_anim)) 

data_feaclip_all_anim[, Type := "Representation - FeaClip"] 
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# Original TS 

win <- 14 

win_size <- 14*period 

n_win <- ncol(data_cons)/period - win 

data_cons_anim <- sapply(0:(n_win - 1), function(i)  

  data_cons[1, ((i*period)+1):((i*period) + win_size)]) 

row.names(data_cons_anim) <- NULL 

data_cons_anim <- data.table(melt(data_cons_anim)) 

data_cons_anim[, Type := "Original TS"] 

# Together 

data_plot <- rbindlist(list(data_cons_anim, 

                            data_feaclip_all_anim)) 

setnames(data_plot, "Var2", "Window") 

  

data_vline <- data.table(Var1 = c(seq(from=period,to=(period*14)-period, by=period), 

                                  seq(from=8,to=(8*14)-8, by=8)), 

                         Type = rep(c("Original TS", "Representation - FeaClip"), 

                                    each = 13) 

                         ) 

Now, create ggplot animation object by ggplot and gganimate functions. 

gg_anim <- ggplot(data_plot) + 

  facet_wrap(~Type, scales = "free", ncol = 1) + 

  geom_line(aes(Var1, value)) + 

  geom_vline(data = data_vline, aes(xintercept = Var1), 

             alpha = 0.75, size = 0.8, col = "dodgerblue2", linetype = 2) + 

  labs(x = "Length", y = NULL, 

       title = "Time series and its representation, Window: {frame_time}") + 

  theme_ts + 
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  transition_time(Window) 

Let’s animate! 

gganimate::animate(gg_anim, fps = 2, nframes = n_win, 

                   width = 720, height = 450, res = 120,renderer = av_renderer('animation.mp4')) 

We can see how FeaClip representation adapts on different behavior of electricity 

consumption - when it’s low around zero, or it gets high etc. - it makes drastic noise 

reduction and extracts only key features from the time series. 

Multiple Data Streams: 

We already got a picture of one consumer time series stream. Let’s again play with the 

whole customer base (in our playing scenario with 1000 consumers). In this part, I would 

like to make nice animation of outlier detection and clustering phase in one image. 

First iteration 

Let’s get through the first iteration (window) of streams processing and clustering 

of ClipStream. So, first thing to do is to subset window of time series streams and 

compute FeaClip representations (the most recent window of length 14 days as in the 

previous case). 

i = 0 

data_win <- data_cons[, ((i*period)+1):((i+win)*period)] 

data_clip <- repr_matrix(data_win, func = repr_feaclip, 

                        windowing = T, win_size = period) 

The second phase is an outlier detection from streams. This is done by “simple” IQR-

quantile method from 2 key FeaClip features - Sum_1 and number of crossings. The 

source code for function detectOutliersIQR is in the ClipStream method repo. Let’s do it. 

outliers <- detectOutliersIQR(data_clip, treshold = 1.5) 

Let’s show outlier consumers with PCA: 

pc_clip <- prcomp(data_clip, center = T, scale. = T)$x[,1:2] 

pc_clip <- data.table(pc_clip, 

                      Outlier = factor(outliers$class)) 

levels(pc_clip$Outlier) <- c("Outlier", "Normal") 

ggplot(pc_clip) + 

  geom_point(aes(PC1, PC2, fill = Outlier, shape = Outlier), 

             size = 2.8, alpha = 0.75) + 
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  scale_shape_manual(values = c(24, 21)) + 

  scale_fill_manual(values = c("salmon", "dodgerblue3")) + 

  labs(title = paste("N.of.Outliers: " , nrow(pc_clip[Outlier == "Outlier"]))) + 

  theme_ts 

 

They are nicely located at the periphery of the feature space. Let’s find some outlier 

consumers and plot them: 

which(pc_clip$PC2 == max(pc_clip$PC2)) 

## [1] 597 

which(pc_clip$PC1 == min(pc_clip$PC1)) # zeros 

## [1] 562 908 961 

ggplot(data.table(Time = 1:ncol(data_win), 

                  Value = data_win[which(pc_clip$PC2 == max(pc_clip$PC2)),])) + 

  geom_line(aes(Time, Value)) + 

  labs(y = "Consumption (kWh)") + 

  theme_ts 
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ggplot(data.table(Time = 1:ncol(data_win), 

                Value = data_win[which(pc_clip$PC1 == min(pc_clip$PC1))[1],])) + 

  geom_line(aes(Time, Value)) + labs(y = "Consumption (kWh)") + theme_ts 

 

The first scenario is a consumer with a few large moments of high consumption and lot 

of crossings. The second scenario is the zero consumption type of a consumer. 

The clustering phase is executed by an automatic K-medoids method. The number of 

clusters is automatically selected by the Davies-Bouldin index from the predefined range 

of clusters. We will cluster only non-outlier representations, for the reduction of data and 

also higher stability of clustering results. 

# n.of.clusters range 

k.min <- 8 

k.max <- 15 

 clip_filtered <- data_clip[-outliers$outliers,] 

clus_res <- clusterOptimKmedoidsDB(clip_filtered, k.min, k.max, 4, 

                                   criterium = "Davies_Bouldin") 

 clustering <- outliers$class 
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clustering[which(clustering == 1)] <- clus_res$clustering 

Let’s assign outliers to nearest clusters (i.e. to nearest medoids). 

out_clust <- sapply(seq_along(outliers$outliers), 

                    function(z)  

                      my_knn(clus_res$medoids, 

                             as.numeric(data_clip[outliers$outliers[z],]))) 

 clustering[which(clustering == 0)] <- out_clust 

In the plot, average daily FeaClip representations will be plotted, because of the longer 

length of original FeaClip representation. 

ave_clip <- repr_matrix(data_clip, func = repr_seas_profile, 

                        args = list(freq = 8, func = mean)) 

data_plot <- data.table(melt(ave_clip)) 

data_plot[, Clust := rep(clustering, ncol(ave_clip))] 

pc_clip[,Var1 := 1:.N] 

data_plot[pc_clip[, .(Var1, Outlier)], Outlier := i.Outlier, on = .(Var1)] 

medoids <- data.table(melt(repr_matrix(clus_res$medoids, 

                                       func = repr_seas_profile, 

                                       args = list(freq = 8, func = mean)))) 

medoids[, Clust := Var1] 

 ggplot(data_plot) + facet_wrap(~Clust, scales = "free", ncol = 3) + 

  geom_line(aes(Var2, value, group = Var1, color = Outlier), alpha = 0.7) + 

  geom_line(data = medoids, aes(Var2, value, group = Var1), alpha = 0.9, color = 

"dodgerblue2", size = 1) + labs(title = "Clusters of average daily FeaClip representations", 

 y = "Count", x = NULL) + 

  scale_x_continuous(breaks = 1:8, labels = c("m_1", "s_1", "m_0", "cr.", 

  names(ts_feaclip)[5:8])) +  scale_color_manual(values = c("salmon", "black")) + 

theme_ts 
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We can see that the number of outliers and clusters dynamically changes through time 

(daily windows). You can build your own data streams clustering algorithm with a 

different streams representation. 

Conclusion 

In this post, I showed you how to process and cluster multiple seasonal time series 

streams with the ClipStream method. I showed you also detected outliers that were 

automatically found from the FeaClip representation. The results of clustering can be also 

used for improving forecasting accuracy of aggregated consumption. 
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