
Ilkogretim Online - Elementary Education Online, 2020; Vol 19 (Issue 4): pp. 7865-7885
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2020.04.765184

7865 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

Evolution Of Multi-Stream Data In A Smart City’s Vanet

Arindam Pal Assistant Professor, Mahadevananda Mahavidyalaya, Kolkata-700120

arinpal2020@gmail.com

Abstract:

In smart cities, vehicular ad-hoc networks (VANETs) will play an important role with the

development of security and smart vehicle video surveillance services. With the smart

components, multimedia communication drivers over VANETs allow passengers to

capture live scenes, share and access on-wheel multimedia services. In this study, I

present an application that provides multiple services in a smart city VANET. I suggest

Since, the main concern of video streaming transmission in such a highly dynamic

environment is to increase the quality of experience (QoE). The massive growth of Big

Data and the evolution of Internet of Things (IoT) technologies enable cities to gain

valuable intelligence from large amounts of real-time generated data. In a smart city,

various IoT devices sequentially generate streams of data that need to be analyzed in a

short period of time; Some use big data techniques. Distributed Stream Processing

Framework (DSPF) has the ability to handle real-time data processing for smart cities.

According to our results, selecting a proper structure in the data analytics layer of a smart

city requires sufficient knowledge about the characteristics of the target applications. The

Internet of Vehicles(IoV) enabled vehicles to exchange information with roadside units

(RSU) with minimum or zero human intervention. This autonomous nature of IoV

requires strong authentication for each entity to recognize each other, as well as these

entities, should ensure the integrity of the exchanged information. Otherwise, this

autonomy will attract malicious users and malicious activity. Due to the dynamic nature

of the IoV network, it is almost impossible to solve the Cyber Security issue with the

centralized authentication system throughput.

Key Words: smart cities, VANET, quality of experience (QoE), Internet of Things (IoT),

Distributed Stream Processing Framework (DSPF)

Introduction

Nowadays, data streams occur in many real-world situations. For example, they are

developed for sensors, web traffic, satellites and other interesting use cases. We need to

process them in a fast manner and extract as much knowledge from them as possible.

Data streams have their own specific characteristics for processing and data mining. For

example, they can be very fast, we cannot process the entire history of the data stream in

memory, so we have to do it incrementally or in (eg sliding) windows.

In this post, I will cover a data stream clustering method that was developed by me. In R,

you can do data stream clustering by stream package, but! There are methods for

7866 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

clustering only one stream (not multiple streams). However, I want to show you the

clustering of multiple data streams, so from multiple sources (eg sensors).

I have developed a clustering method adapted for time series streams - known as

ClipStream . This approach is attribute based, so multiple attributes (features) are

collected from multiple stream windows. You can read more about it from my journal

paper.

I will show you the use case of smart meter data - time series of electricity consumption

(consumer) from London (openly available here). The motivation for clustering such data

is:

1. Find out the general pattern of costs,

2. Detecting outliers,

3. Unsupervised Classification of Consumers,

4. Create more predictable groups of time series,

5. Change and monitor behavior.

The motivation for processing them as streams is that power consumption (or

production) data is measured every 5, 15 or 30 minutes.

Clipstream has the following steps (very briefly):

1. Computing data stream representation (reduced dimensionality) for each stream – eg

summary,

2. Identify external (extraordinary) flows directly from the extracted representation,

3. Cluster non-outlier representation by K-medoids,

4. Assign the outlier stream to the nearest cluster (medoid),

5. Total time by cluster

On the other hand, the Internet of Things (IoT) is becoming the primary grounds for data

mining and Big Data analytics. With the rapid growth of IoT and its use cases in different

domains such as Smart City, Mobile e-Health and Smart Grid, streaming applications are

driving a new wave of data revolutions. In most IoT applications the resulting analytics

give some feedbacks to the system to improve it. Compared to the other Big Data domains,

there is a low-latency cycle between system responses which makes it necessary to

process events in real-time, to derive acceptable responsiveness. In all of these domains,

one of the most fundamental challenge is to explore the large volumes of data and extract

useful information for future actions. In particular, this real-time exploration has to be

done at massive scales.

Nowadays generated data in IoT era have several characteristics that put them in the

class of Big Data. Smart cities follow four steps to improve the quality of life and enable

7867 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

economic growth through a network of connected IoT devices and other technologies.

These steps are as follows:

1. Collection – Smart sensors gather real-time data

2. Analysis – The data is analysed to gain insights into the operation of city services and

operations

3. Communication – The results of the data analysis are communicated to decision

makers

4. Action – Action is taken to improve operations, manage assets and improve the quality

of city life for the residents

The ICT framework brings together real time data from connected assets, objects and

machines to improve decision making. However, in addition, citizens are able to engage

and interact with smart city ecosystems through mobile devices and connected vehicles

and buildings. By pairing devices with data and the infrastructure of the city, it is possible

to cut costs, improve sustainability and streamline factors such as energy distribution

and refuse collection, as well as offering reduced traffic congestion, and improve air

quality.

BIG DATA PLATFORM:

A big data platform acts as an organized storage medium for large amounts of data. Big

data platforms utilize a combination of data management hardware and software tools to

store aggregated data sets, usually onto the cloud.

Google Cloud offers lots of big data management tools, each with its own specialty.

BigQuery warehouses petabytes of data in an easily queried format.

Users can analyze data stored on Microsoft’s Cloud platform, Azure, with a broad

spectrum of open-source Apache technologies, including Hadoop and Spark.

Best known as AWS, Amazon’s cloud-based platform comes with analytics tools that are

designed for everything from data prep and warehousing to SQL queries and data

lake design. All the resources scale with your data as it grows in a secure cloud-based

environment. Features include customizable encryption and the option of a virtual

private cloud.

Snowflake is a data warehouse used for storage, processing and analysis. It runs

completely atop the public cloud infrastructures — Amazon Web Services, Google Cloud

Platform and Microsoft Azure — and combines with a new SQL query engine. Built like a

SaaS product, everything about its architecture is deployed and managed on the cloud.

VANET:

VANET (Vehicular Ad-hoc Networks) has become a promising field of research and is an

important component of Intelligent Transportation Systems (ITS). The dramatic increase

7868 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

in the number of vehicles equipped with computing technologies and wireless

communication devices have given way to new application scenarios that were not

feasible before. In this era of modern technology, the Internet of Vehicles (IoV) is an

emergent technology. The IoV augments ITS by magnifying the capabilities of VANETs

riding on the concept of the Internet of Things (IoT). IoV enabled vehicles to exchange

information with roadside units (RSU) with minimum or zero human intervention. This

autonomous nature of IoV requires strong authentication for each entity to recognize

each other, as well as these entities, should ensure the integrity of the exchanged

information. Otherwise, this autonomy will attract malicious users and malicious activity.

Due to the dynamic nature of the IoV network, it is almost impossible to solve the Cyber

Security issue with the centralized authentication system.

Ad Hoc Network Features:

Infrastructureless network: Like other network, it doesn’t require centralized controlling

authority, routers, and physical medium for transmitting data.

Nodes in the network can be mobile: Nodes can be stationary or nodes in the network

have freedom to move in the communication range of network nodes. If all nodes are

moving with a constant speed in the range of each other, connection can remain without

interruption. In some cases, every node moves at a different speed, which can be

connected and disconnected from the network.

Each node acts as a router and takes the decision of forwarding the packets: Nodes in the

network themselves play a role of router. Nodes either send their own messages or

7869 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

forward another node messages to destination nodes. Route-finding process is initiated

when a particular message is sent by the source node. Nodes in the network have

individual or group strategy for forwarding messages.

No centralized controlling authority: In other wireless network, behaviors of nodes in the

network are controlled by centralized controlling authority. In the case of ad hoc

network, there is no centralized controlling authority.

Flexible in nature, can establish, and can dissolve as nodes move: As nodes in the network

can move, they result in formation and deformation of network from time to time.

Vehicular Ad Hoc Networks (VANETs) are characterized by high mobility of nodes and

volatility, which make privacy, trust management, and security challenging issues in

VANETs' design. In such networks, data can be exposed to a variety of attacks, the most

dangerous is false information dissemination, which threatens the safety and efficiency

of transportation systems. False emergency messages can be injected by inside attackers

to announce fake incidents such as traffic accidents, resulting in a false information

attack. As the data in VANET is based on events, any trust mechanism must first identify

the true events. To address these security challenges, a blockchain-based authentication

scheme and trust management model are proposed for VANETs. Using the authentication

scheme, vehicles are enabled to send messages anonymously to the roadside units (RSUs)

and the identity privacy of vehicles is protected. Besides, the proposed trust management

model is designed to detect and deal with false information by evaluating the

trustworthiness of vehicles and data. Using the trust model, when vehicles report an

incident to the nearest RSU, the RSU is able to verify whether or not the incident took

place. This mechanism ensures that RSUs send only verified event notifications. Finally,

RSUs participate in updating the trust values of vehicles and store these values in the

blockchain. The efficiency of the proposed authentication scheme is validated through

analysis while the trust model is validated through simulations. The results obtained

show that the proposed authentication scheme and the trust model provide better

7870 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

performance than other state-of-the-art models where malicious vehicles can be

identified efficiently and RSUs are enabled to broadcast only legitimate events.

Abbreviations

IoT:

Internet of Things

DSPF:

distributed stream processing framework

RFID:

Radio Frequency IDentification

HDFS:

Hadoop Distributed File System

API:

application programming interface

DB:

database

JSON:

JavaScript Object Notation

DAG:

directed acyclic graph

ETL:

extract, transform, load

7871 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

CEP:

Complex Event Processing

ML:

machine learning

IVP:

Image and Video Processing

Evalution:

I will show you use case on smart meter data - electricity consumption time series

(consumers) from London (openly available here). Motivation for clustering such a data

is to:

extract typical patterns of consumption,

detect outliers,

unsupervised classification of consumers,

create more forecastable groups of time series,

monitor changes and behavior.

The motivation to process them as streams is the fact that the data of electricity

consumption (or production) are measured every 5, 15 or 30 minutes.

ClipStream has following steps (very briefly):

computing data streams representation for every stream (dimensionality reduction) - i.e.

synopsis,

detect outlier (anomal) streams directly from extracted representations,

cluster non-outlier representations by K-medoids,

assign outlier streams to nearest clusters (medoids),

aggregate time series by clusters,

detect changes in aggregated time series.

In this post, I will mainly focus on the first 4 parts of my approach, since there are

applicable to various use cases - not only on smart meter data and its forecasting. The

whole method is developed in unsupervised fashion (yey!),

so representation, clustering and outlier detection of time series streams are “learned”

unsupervised.

Data exploration

7872 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

Firstly, read the London smart meter data, which compromise more than 4000

consumers and load all the needed packages.

library(data.table)

library(parallel)

library(cluster)

library(clusterCrit)

library(TSrepr)

library(OpenML)

library(ggplot2)

library(grid)

library(animation)

library(gganimate)

library(av)

data <- OpenML::getOMLDataSet(data.id = 41060)

data <- data.matrix(data$data)

Let’s subset first 1000 consumers for more simple operations.

data_cons <- data[1:1000,]

period <- 48 # frequency of time series, every day 48 measurements are gathered

Let’s plot random consumer for better imagination.

ggplot(data.table(Time = 1:ncol(data_cons),

 Value = data_cons[200,])) + geom_line(aes(Time, Value)) +

 labs(y = "Consumption (kWh)") + theme_ts

7873 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

We can see stochastic behavior, but also some consumption pattern.

We can plot, for example, its average daily or weekly profile. We will do it by TSrepr’s

package function repr_seas_profile.

ggplot(data.table(Time = 1:period,

 Value = repr_seas_profile(data_cons[200,], freq = period,func = mean))) +

 geom_line(aes(Time, Value)) + geom_point(aes(Time, Value), alpha = 0.8, size = 2.5) +

 scale_x_continuous(breaks = seq(1, 48, 6), labels = paste(seq(0, 23, by = 3), "h", sep =

"")) + labs(y = "Consumption (kWh)") + theme_ts

The peak at the start of a day…

Now, let’s plot weekly pattern:

ggplot(data.table(Time = 1:(period*7), Value = repr_seas_profile(data_cons[200,], freq =

period*7, func = mean)))

geom_line(aes(Time, Value), size = 0.8) +

https://cran.r-project.org/package=TSrepr
https://cran.r-project.org/package=TSrepr

7874 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 geom_vline(xintercept = (0:7)*period, color = "dodgerblue2",

 size = 1.2, alpha = 0.7, linetype = 2) + labs(y = "Consumption (kWh)") + theme_ts

There is some change during a week.

Let’s explore the whole consumer base, but how when we have more than 1000 time

series? We can cluster time series and just plot its daily patterns for example by created

clusters. We will reduce the length of the visualized time series and also a number of time

series in one plot.

First, extract average daily patterns, we will make it by repr_matrix function from TSrepr.

Normalization of every consumer time series - row-wise by z-score is necessary! You can

use your own normalization function (z-score and min-max methods are implemented).

data_ave_prof <- repr_matrix(data_cons, func = repr_seas_profile,args = list(freq = period,

 func = median),normalise = TRUE,

 func_norm = norm_z)

Let’s cluster computed mean daily profiles for example by K-means and to 12 clusters:

res_clust <- kmeans(data_ave_prof, 12, nstart = 20)

Preprocess clustering results with data.table package and plot them:

data_plot <- data.table(melt(data_ave_prof))

data_plot[, Clust := rep(res_clust$cluster, ncol(data_ave_prof))]

 data_centroid <- data.table(melt(res_clust$centers))

data_centroid[, Clust := Var1]

ggplot(data_plot) +

 facet_wrap(~Clust, scales = "free", ncol = 3) +

7875 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 geom_line(aes(Var2, value, group = Var1), alpha = 0.7) +

 geom_line(data = data_centroid, aes(Var2, value, group = Var1),

 alpha = 0.8, color = "red", size = 1.2) + scale_x_continuous(breaks = c(1,seq(12, 48, 12)),

 labels = paste(seq(0, 24, by = 6), "h", sep = "")) + theme_ts

Various interesting patterns of daily consumption!

BUT (here comes motivation)! When we would like to cluster just most recent data (for

example 2-3 weeks), and update it regularly every day (or even thought half-hour),

automatically detect changes in time series streams and detect anomalies (outlier

consumers), detect automatically the number of clusters, and make it as quickly as

possible… We can not do it like in the previous case, because of computational and

memory load and also accuracy. Here comes on screen more sophisticated multiple data

streams clustering methods. In ClipStream that uses FeaClip time series streams

representation (see my previous post about time series represetnations), a

representation can be computed incrementally, clusterings are computed in data batches,

outliers are detected straight from representation and etc.

FeaClip is interpretable time series representation. It extracts 8 interpretable features

from clipped representation (again please see the mentioned blog post). Let’s plot

representation from one day consumption time series:

ts_feaclip <- repr_feaclip(data_cons[1, 1:48])

 define_region <- function(row, col){

 viewport(layout.pos.row = row, layout.pos.col = col)

}

7876 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 gg1 <- ggplot(data.table(Consumption = data_cons[1, 1:48],Time = 1:48)) +

 geom_line(aes(Time, Consumption)) +

 geom_point(aes(Time, Consumption), size = 2, alpha = 0.8) +

 geom_hline(yintercept = mean(data_cons[1, 1:48]), color = "red", size = 0.8, linetype =

7) +

 theme_ts

 gg2 <- ggplot(data.table(Count = ts_feaclip, Time = 1:8)) + geom_line(aes(Time, Count))

+

 geom_point(aes(Time, Count), size = 2, alpha = 0.8) +

 scale_x_continuous(breaks = 1:8, labels = names(ts_feaclip)) + theme_ts

 grid.newpage()

pushViewport(viewport(layout = grid.layout(2, 1)))

print(gg1, vp = define_region(1, 1))

print(gg2, vp = define_region(2, 1))

Let’s compute it also for consumption of length 2 weeks - by windows.

win <- 14

ts_feaclip_long <- repr_windowing(data_cons[1, 1:(period*win)],

 func = repr_feaclip, win_size = period)

7877 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 means <- sapply(0:(win-1), function(i) mean(data_cons[1,

((period*i)+1):(period*(i+1))]))

means <- data.table(Consumption = rep(means, each = period),

 Time = 1:length(data_cons[1, 1:(period*win)]))

 gg1 <- ggplot(data.table(Consumption = data_cons[1, 1:(period*win)],

 Time = 1:(period*win))) +

 geom_line(aes(Time, Consumption), alpha = 0.95) +

 geom_vline(xintercept = seq(from=period,to=(period*win)-period, by=period),

 alpha = 0.75, size = 1.0, col = "dodgerblue2", linetype = 2) +

 geom_line(data = means, aes(Time, Consumption), color = "firebrick2",

 alpha = 0.8, size = 1.2, linetype = 5) +

 labs(y = "Consumption (kWh)", title = NULL, x = NULL) +

 scale_x_continuous(breaks=seq(from=period/2, to=(period*win), by = period),

 labels=c(1:win)) +theme_ts

 gg2 <- ggplot(data.table(Count = ts_feaclip_long,

 Time = 1:length(ts_feaclip_long))) +

 geom_line(aes(Time, Count)) +

 geom_vline(xintercept = seq(from=8,to=(8*win)-8, by=8),

 alpha = 0.75, size = 1.0, col = "dodgerblue2", linetype = 2) +

 # geom_point(aes(Time, Count), size = 2, alpha = 0.8) +

 scale_x_continuous(breaks=seq(from=8/2, to=(8*win), by = 8),

 labels=c(1:win)) +

 labs(title = NULL, x = "Day") + theme_ts

grid.newpage()

pushViewport(viewport(layout = grid.layout(2, 1)))

print(gg1, vp = define_region(1, 1))

print(gg2, vp = define_region(2, 1))

7878 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

We can see the typical pattern during working days and some changes when consumption

goes high - the representation adapts to these changes, but not drastically - because of

the average of a window (normalization).

FeaClip animation

Now, let’s play a little bit with gganimate and av packages and visualize the behavior of

FeaClip through time (stream).

First, prepare whole one time series as a stream.

Representation

data_feaclip_all <- repr_windowing(data_cons[1,],

 func = repr_feaclip,

 win_size = period)

win <- 14

win_size <- 14*8

n_win <- length(data_feaclip_all)/8 - win

data_feaclip_all_anim <- sapply(0:(n_win - 1), function(i)

 data_feaclip_all[((i*8)+1):((i*8) + win_size)])

data_feaclip_all_anim <- data.table(melt(data_feaclip_all_anim))

data_feaclip_all_anim[, Type := "Representation - FeaClip"]

7879 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

Original TS

win <- 14

win_size <- 14*period

n_win <- ncol(data_cons)/period - win

data_cons_anim <- sapply(0:(n_win - 1), function(i)

 data_cons[1, ((i*period)+1):((i*period) + win_size)])

row.names(data_cons_anim) <- NULL

data_cons_anim <- data.table(melt(data_cons_anim))

data_cons_anim[, Type := "Original TS"]

Together

data_plot <- rbindlist(list(data_cons_anim,

 data_feaclip_all_anim))

setnames(data_plot, "Var2", "Window")

data_vline <- data.table(Var1 = c(seq(from=period,to=(period*14)-period, by=period),

 seq(from=8,to=(8*14)-8, by=8)),

 Type = rep(c("Original TS", "Representation - FeaClip"),

 each = 13)

)

Now, create ggplot animation object by ggplot and gganimate functions.

gg_anim <- ggplot(data_plot) +

 facet_wrap(~Type, scales = "free", ncol = 1) +

 geom_line(aes(Var1, value)) +

 geom_vline(data = data_vline, aes(xintercept = Var1),

 alpha = 0.75, size = 0.8, col = "dodgerblue2", linetype = 2) +

 labs(x = "Length", y = NULL,

 title = "Time series and its representation, Window: {frame_time}") +

 theme_ts +

7880 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 transition_time(Window)

Let’s animate!

gganimate::animate(gg_anim, fps = 2, nframes = n_win,

 width = 720, height = 450, res = 120,renderer = av_renderer('animation.mp4'))

We can see how FeaClip representation adapts on different behavior of electricity

consumption - when it’s low around zero, or it gets high etc. - it makes drastic noise

reduction and extracts only key features from the time series.

Multiple Data Streams:

We already got a picture of one consumer time series stream. Let’s again play with the

whole customer base (in our playing scenario with 1000 consumers). In this part, I would

like to make nice animation of outlier detection and clustering phase in one image.

First iteration

Let’s get through the first iteration (window) of streams processing and clustering

of ClipStream. So, first thing to do is to subset window of time series streams and

compute FeaClip representations (the most recent window of length 14 days as in the

previous case).

i = 0

data_win <- data_cons[, ((i*period)+1):((i+win)*period)]

data_clip <- repr_matrix(data_win, func = repr_feaclip,

 windowing = T, win_size = period)

The second phase is an outlier detection from streams. This is done by “simple” IQR-

quantile method from 2 key FeaClip features - Sum_1 and number of crossings. The

source code for function detectOutliersIQR is in the ClipStream method repo. Let’s do it.

outliers <- detectOutliersIQR(data_clip, treshold = 1.5)

Let’s show outlier consumers with PCA:

pc_clip <- prcomp(data_clip, center = T, scale. = T)$x[,1:2]

pc_clip <- data.table(pc_clip,

 Outlier = factor(outliers$class))

levels(pc_clip$Outlier) <- c("Outlier", "Normal")

ggplot(pc_clip) +

 geom_point(aes(PC1, PC2, fill = Outlier, shape = Outlier),

 size = 2.8, alpha = 0.75) +

7881 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

 scale_shape_manual(values = c(24, 21)) +

 scale_fill_manual(values = c("salmon", "dodgerblue3")) +

 labs(title = paste("N.of.Outliers: " , nrow(pc_clip[Outlier == "Outlier"]))) +

 theme_ts

They are nicely located at the periphery of the feature space. Let’s find some outlier

consumers and plot them:

which(pc_clip$PC2 == max(pc_clip$PC2))

[1] 597

which(pc_clip$PC1 == min(pc_clip$PC1)) # zeros

[1] 562 908 961

ggplot(data.table(Time = 1:ncol(data_win),

 Value = data_win[which(pc_clip$PC2 == max(pc_clip$PC2)),])) +

 geom_line(aes(Time, Value)) +

 labs(y = "Consumption (kWh)") +

 theme_ts

7882 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

ggplot(data.table(Time = 1:ncol(data_win),

 Value = data_win[which(pc_clip$PC1 == min(pc_clip$PC1))[1],])) +

 geom_line(aes(Time, Value)) + labs(y = "Consumption (kWh)") + theme_ts

The first scenario is a consumer with a few large moments of high consumption and lot

of crossings. The second scenario is the zero consumption type of a consumer.

The clustering phase is executed by an automatic K-medoids method. The number of

clusters is automatically selected by the Davies-Bouldin index from the predefined range

of clusters. We will cluster only non-outlier representations, for the reduction of data and

also higher stability of clustering results.

n.of.clusters range

k.min <- 8

k.max <- 15

 clip_filtered <- data_clip[-outliers$outliers,]

clus_res <- clusterOptimKmedoidsDB(clip_filtered, k.min, k.max, 4,

 criterium = "Davies_Bouldin")

 clustering <- outliers$class

7883 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

clustering[which(clustering == 1)] <- clus_res$clustering

Let’s assign outliers to nearest clusters (i.e. to nearest medoids).

out_clust <- sapply(seq_along(outliers$outliers),

 function(z)

 my_knn(clus_res$medoids,

 as.numeric(data_clip[outliers$outliers[z],])))

 clustering[which(clustering == 0)] <- out_clust

In the plot, average daily FeaClip representations will be plotted, because of the longer

length of original FeaClip representation.

ave_clip <- repr_matrix(data_clip, func = repr_seas_profile,

 args = list(freq = 8, func = mean))

data_plot <- data.table(melt(ave_clip))

data_plot[, Clust := rep(clustering, ncol(ave_clip))]

pc_clip[,Var1 := 1:.N]

data_plot[pc_clip[, .(Var1, Outlier)], Outlier := i.Outlier, on = .(Var1)]

medoids <- data.table(melt(repr_matrix(clus_res$medoids,

 func = repr_seas_profile,

 args = list(freq = 8, func = mean))))

medoids[, Clust := Var1]

 ggplot(data_plot) + facet_wrap(~Clust, scales = "free", ncol = 3) +

 geom_line(aes(Var2, value, group = Var1, color = Outlier), alpha = 0.7) +

 geom_line(data = medoids, aes(Var2, value, group = Var1), alpha = 0.9, color =

"dodgerblue2", size = 1) + labs(title = "Clusters of average daily FeaClip representations",

 y = "Count", x = NULL) +

 scale_x_continuous(breaks = 1:8, labels = c("m_1", "s_1", "m_0", "cr.",

 names(ts_feaclip)[5:8])) + scale_color_manual(values = c("salmon", "black")) +

theme_ts

7884 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

We can see that the number of outliers and clusters dynamically changes through time

(daily windows). You can build your own data streams clustering algorithm with a

different streams representation.

Conclusion

In this post, I showed you how to process and cluster multiple seasonal time series

streams with the ClipStream method. I showed you also detected outliers that were

automatically found from the FeaClip representation. The results of clustering can be also

used for improving forecasting accuracy of aggregated consumption.

References

Agarwal S. 2016 state of fast data and streaming applications

survey. https://www.opsclarity.com/2016-state-fast-data-streaming-applications-

survey/. Accessed 12 Oct 2017.

Díaz M, Martín C, Rubio B. State-of-the-art, challenges, and open issues in the integration

of internet of things and cloud computing. J Netw Comput Appl. 2016;67:99–117.

Article Google Scholar

Zhu C, Zhou H, Leung VC, Wang K, Zhang Y, Yang LT. Toward big data in green city. IEEE

Commun Mag. 2017;55(11):14–8.

https://www.opsclarity.com/2016-state-fast-data-streaming-applications-survey/
https://www.opsclarity.com/2016-state-fast-data-streaming-applications-survey/
https://doi.org/10.1016%2Fj.jnca.2016.01.010
http://scholar.google.com/scholar_lookup?&title=State-of-the-art%2C%20challenges%2C%20and%20open%20issues%20in%20the%20integration%20of%20internet%20of%20things%20and%20cloud%20computing&journal=J%20Netw%20Comput%20Appl&doi=10.1016%2Fj.jnca.2016.01.010&volume=67&pages=99-117&publication_year=2016&author=D%C3%ADaz%2CM&author=Mart%C3%ADn%2CC&author=Rubio%2CB

7885 | Arindam Pal Evolution Of Multi-Stream Data In A Smart City’s

Vanet

Article Google Scholar

Chen F, Deng P, Wan J, Zhang D, Vasilakos AV, Rong X. Data mining for the internet of

things: literature review and challenges. Int J Distrib Sens Netw. 2015;11(8):431047.

Article Google Scholar

Guo Y, Rao J, Jiang C, Zhou X. Moving hadoop into the cloud with flexible slot management

and speculative execution. IEEE Trans Parallel Distrib Syst. 2017;3:798–812.

Article Google Scholar

Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun

ACM. 2008;51(1):107–13.

Article Google Scholar

Goudarzi M. Heterogeneous architectures for big data batch processing in mapreduce

paradigm. IEEE Trans Big Data. 2017. https://doi.org/10.1109/TBDATA.2017.2736557.

Article Google Scholar

Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu

M, Donham J, et al. Storm@twitter. In: Proceedings of the 2014 ACM SIGMOD

international conference on management of data. New York: ACM; 2014. p. 147–56.

Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: an efficient and fault-

tolerant model for stream processing on large clusters. HotCloud. 2012;12:10.

Google Scholar

Katsifodimos A, Schelter S. Apache flink: stream analytics at scale. In: 2016 IEEE

international conference on cloud engineering workshop (IC2EW). New York: IEEE;

2016. p. 193.

https://doi.org/10.1109%2FMCOM.2017.1700142
http://scholar.google.com/scholar_lookup?&title=Toward%20big%20data%20in%20green%20city&journal=IEEE%20Commun%20Mag&doi=10.1109%2FMCOM.2017.1700142&volume=55&issue=11&pages=14-18&publication_year=2017&author=Zhu%2CC&author=Zhou%2CH&author=Leung%2CVC&author=Wang%2CK&author=Zhang%2CY&author=Yang%2CLT
https://doi.org/10.1155%2F2015%2F431047
http://scholar.google.com/scholar_lookup?&title=Data%20mining%20for%20the%20internet%20of%20things%3A%20literature%20review%20and%20challenges&journal=Int%20J%20Distrib%20Sens%20Netw&doi=10.1155%2F2015%2F431047&volume=11&issue=8&publication_year=2015&author=Chen%2CF&author=Deng%2CP&author=Wan%2CJ&author=Zhang%2CD&author=Vasilakos%2CAV&author=Rong%2CX
https://doi.org/10.1109%2FTPDS.2016.2587641
http://scholar.google.com/scholar_lookup?&title=Moving%20hadoop%20into%20the%20cloud%20with%20flexible%20slot%20management%20and%20speculative%20execution&journal=IEEE%20Trans%20Parallel%20Distrib%20Syst&doi=10.1109%2FTPDS.2016.2587641&volume=3&pages=798-812&publication_year=2017&author=Guo%2CY&author=Rao%2CJ&author=Jiang%2CC&author=Zhou%2CX
https://doi.org/10.1145%2F1327452.1327492
http://scholar.google.com/scholar_lookup?&title=Mapreduce%3A%20simplified%20data%20processing%20on%20large%20clusters&journal=Commun%20ACM&doi=10.1145%2F1327452.1327492&volume=51&issue=1&pages=107-113&publication_year=2008&author=Dean%2CJ&author=Ghemawat%2CS
https://doi.org/10.1109/TBDATA.2017.2736557
https://doi.org/10.1109%2FTBDATA.2017.2736557
http://scholar.google.com/scholar_lookup?&title=Heterogeneous%20architectures%20for%20big%20data%20batch%20processing%20in%20mapreduce%20paradigm&journal=IEEE%20Trans%20Big%20Data&doi=10.1109%2FTBDATA.2017.2736557&publication_year=2017&author=Goudarzi%2CM
http://scholar.google.com/scholar_lookup?&title=Discretized%20streams%3A%20an%20efficient%20and%20fault-tolerant%20model%20for%20stream%20processing%20on%20large%20clusters&journal=HotCloud&volume=12&publication_year=2012&author=Zaharia%2CM&author=Das%2CT&author=Li%2CH&author=Shenker%2CS&author=Stoica%2CI

