

Ilkogretim Online - Elementary Education Online, 2020; 19 (4): pp. 744-751
http://ilkogretim-online.org
doi:10.17051/ilkonline.2020.04.178

A tutorial: Load balancers in a container technology system using
docker swarms on a single board computer cluster

*Marischa Elveny, Faculty of Computer Science and Information Technology (Fasilkom-TI), Universitas
Sumatera Utara, Medan, Indonesia, marischaelveny@usu.ac.id
Ari Winata, Faculty of Computer Science and Information Technology (Fasilkom-TI), Universitas Sumatera
Utara, Medan, Indonesia.
Baihaqi Siregar, Faculty of Computer Science and Information Technology (Fasilkom-TI), Universitas
Sumatera Utara, Medan, Indonesia.
Rahmad Syah, Faculty of Computer Science and Information Technology (Fasilkom-TI), Universitas
Sumatera Utara, Medan, Indonesia.

Abstract. Overload requests on a webserver are one of the important issues in web server management.
The main cause of overload requests on the webserver is the high demand by the user / client for the
webserver that exceeds the maximum load limit borne by the webserver. One of the ways used to handle
overload requests on the webserver is by sharing the requests evenly among the available web servers.
The webserver management system still uses a single server by the webserver management developer
which results in the possibility of overloading requests on the webserver. The method proposed in this
study is a haproxy load balancer on a single board computer cluster using a docker swarm. Before the
performance testing analysis stage is carried out, the researcher will build a single board computer
cluster, using 1 raspberry pi master server which will become the load balancer and 3 raspberry pi
worker servers to become a webserver which will respond to users alternately according to the algorithm
that will be used on the hap Roxy load balancer. After testing in this study, it was concluded that using the
load balancing method with the least connection algorithm resulted in an accuracy rate of 95.47%, while
testing using the load balancing method with the round robin algorithm was able to produce a greater
level of accuracy, namely 97%. Use 1 raspberry pi master server which will be the load balancer and 3
raspberry pi worker servers to become the webserver which will respond to the user alternately
according to the algorithm that will be used on the haproxy load balancer. After testing in this study, it
was concluded that using the load balancing method with the least connection algorithm resulted in an
accuracy rate of 95.47%, while testing using the load balancing method with the round robin algorithm
was able to produce a greater level of accuracy, namely 97%. use 1 raspberry pi master server which will
be the load balancer and 3 raspberry pi worker servers to become the webserver which will respond to
the user alternately according to the algorithm that will be used on the haproxy load balancer. After
testing in this study, it was concluded that using the load balancing method with the least connection
algorithm resulted in an accuracy rate of 95.47%, while testing using the load balancing method with the
round robin algorithm was able to produce a greater level of accuracy, namely 97%.

Keywords: Load balancer, IOT, Docker swarms, Round robin algorithm.
Received: 04.10.2020 Accepted: 11.11.2020 Published: 26.12.2020

BACKGROUND

A server is a computer system that provides a certain type of service in a computer network. The server is
a place that contains various types of information or data. The server is supported by a processor that is
scalable and large RAM, also equipped with a special operating system, which is called a network
operating system [1]. In service processing by the server, there is a condition that the number of services
requested by the client exceeds the maximum load that the server cannot bear [2] [3]. So this can result in
heavy traffic on a cross-network, and the workload on the server also increases. When a system
experiences an increase in the number of requests to exceed the maximum threshold of a server per day /
hour / minute / second, this can cause system performance on the server to be very slow and cause
problems, one of which is a complaint felt by the client or user [4]. The problem that arises in this
research is the increasing workload on the web server in line with the increasing number of web-based
applications and clients or users that must be handled or served. The data used by web-based
applications is usually stored in a database server [5] [6]. This allows corruption of data from the entire
system to the application when the database server experiences problems that might occur. This can

http://ilkogretim-online.org/
http://dx.doi.org/10.17051/io.2015.85927

745 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

cause system performance on the server to be very slow and cause problems, one of which is the
complaints felt by clients or users.

The increasing demand for information needs on the internet has caused traffic on the internet to
also become denser. The increasing amount of traffic on the internet will cause the workload of an
information service provider, namely the web server to be overloaded or better known as Overload,
which can cause the server to go down [7]. To solve the problem of overloading the server, the concept of
cluster computing can be applied, which is a technology that combines several computers or servers that
work together as if they are a single system. In its implementation, the cluster computing system is built
using the load balancing method, which is a technique for distributing traffic loads to several server
clusters in a balanced manner, so that traffic can run optimally and optimally. The implementation of load
balancing on the web server cluster is very important and can be a solution in handling server loads that
are too heavy due to the number of requests or requests so that it can increase scalability in distributed
systems [8].

Research on the Container Technology System and related to Docker has been carried out by
several previous researchers. Based on the analysis conducted [9], the right technology for realizing a
high availability webserver system is to adopt a container-based virtualization technology instead of a
virtual machine-based. This technology does not build your own virtual machine, it saves more memory,
processor and storage. The startup time required for Docker is also very fast, even much faster than the
physical server. This happens because docker shares or shares the Linux kernel from a physical server
[9].

Another study, namely the Implementation of Load Balancers with Lightweight Virtualization
Using Docker for Video on Demand Services discusses the application of load balancers with lightweight
virtualization to dockers. This study aims to determine the performance of the load balancer on video on
demand services. From the results of the research conducted it is known that the server performance
using load balancing is better than the single server, because the workload and traffic load are no longer
served by one server anymore, but the load is divided into three servers. In this study it is also known
that the best algorithm to use for load balancing is the least connection, because there is a decrease in
CPU utilization by 5.17% [10].

Other research, namely the Implementation of Server Clusters on the Raspberry Pi using the Load
Balancing Method, discusses conducting server clusters that are applied to the Raspberry Pi. The method
used in the construction of this server cluster uses the load balancing method. The test is applied by
comparing the performance of the Raspberry Pi which handles data traffic singly without using a load
balancer and testing the Raspberry Pi using a load balancer as a load balancer between server cluster
members. Based on the results of tests that have been done [14], it can be proven that the Raspberry Pi as
a load balancer is able to minimize the performance load of webserver data traffic. Aside from that.

RESEARCH OBJECTIVES

The purpose of this study was to determine the results of implementation testing and load balancer
analysis in handling requests to the webserver in the container technology system network using a
docker swarm on a single board computer cluster.

System Analysis and Design

General Architecture

The general architecture section describes the process flow of the system to be built. The general
architecture of the system to be built can be seen in Figure 3.1.

Figure 1. General Architecture

746 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

The following is an explanation of the working principle of the system in Figure 3.1.

Client

In this section, the client will make a service request to the server via a network that has gone through the
network routing stage.

Switch

In this section the switch will forward the service request that the client has requested to the server.

Server

In this section the server will receive a service request and then immediately process the request and
forward it to the load balancer that has been created in such a way.

Load Balancer

In this section the load balancer will use the Round Robin scheduling algorithm and the Least Connection
scheduling on the HAProxy Load Balancer will then be forwarded to the single board computer cluster.

Single Board Computer Clusters Using Docker

In this section Docker will use the container technology system as a tool that will handle a number of
requests that have been forwarded by the previous stage, and return them to the server, and the server
will respond to the client.

Load Balancer Implementation Analysis

Figure 2. Load Balancer Implementation Analysis

The following is an explanation of the working principle of the system in Figure 3.2.

User / Client

In this section the user / client will send several requests to the haproxy server and will receive feedback
in the form of the desired response.

Haproxy Server

In this section haproxy will receive several requests from users and then distribute the requests to nodes
that have service availability or service availability that are still able to receive these requests.

Webserver - 1

In this section Webserver - 1 will accept requests that have been distributed by haproxy. If this webserver
is unable to provide the service, it will give a null or error value to the haproxy server and will distribute
the request to other web servers.

Webserver - 2

In this section Webserver - 2 will receive requests that have been distributed by haproxy. If this
webserver is unable to provide the service, it will give a null or error value to the haproxy server and will
distribute requests to other web servers.

747 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

Webserver - 3

In this section, Webserver - 3 will receive requests that have been distributed by haproxy. If this
webserver is unable to provide the service, it will give a null or error value to the haproxy server and will
distribute requests to other web servers. If other web servers have reached the maximum threshold
value, the haproxy server will send null or error to the users.

System Flowchart

Flowchart design aims to make it easier for users or readers to more easily understand the workflow of a
system so that the system can be used as well as possible. The flowchart design for requesting service
requests from users and sending responses by the server can be seen in Figure 3.3.

Figure 3. Flowchart system

The following is an explanation of the working principle of the system in Figure 3.3.

User

In this section the user will make a request.

Request

In this section, the user will receive a request and then proceed to the raspberry pi server section.

Raspberry Pi Server

In this section the raspberry pi server will receive requests by the user and then proceed to haproxy as a
load balancer in this study.

Load Balancer

In this section the haproxy load balancer will continue to the raspberry pi node cluster.

748 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

Raspberry Pi Cluster Node

In this section the raspberry pi node cluster will respond whether it still has service availability or service
availability that can execute requests by the user. If node 1 is willing it will give results, if node 1 is not
willing it will notify haproxy as a load balancer.

Result Response

In this section the results will distinguish between the results of a successful response and the result of an
error response, and will be sent back to the user.

Requests Testing Scenario Data

The data used is using 1,680,000 requests made by virtual users using the JMeter application.

Table 1. Requests Testing Scenario Data

No. Users Ramp-Up Period Loop Count Request
1 2,000 10 30 60,000
2 2,000 20 40 80,000
3 2,000 30 50 100,000
4 3,000 10 30 90,000
5 3,000 20 40 120,000
6 3,000 30 50 150,000
7 4,000 10 30 120,000
8 4,000 20 40 160,000
9 4,000 30 50 200,000
10 5,000 10 30 150,000
11 5,000 20 40 200,000
12 5,000 30 50 250,000
Result 1,680,000 Requests

RESULTS AND DISCUSSION

Testing Parameters

Throughput

Throughput is the actual bandwidth or the actual measured bandwidth at a certain time in the internet
network routing process. Throughput testing is a variable parameter of Quality Of Sevice with the aim of
seeing network performance in terms of speed of packet delivery that can be sent by utilizing the
available bandwidth.

𝑇 =
𝑢

𝑟
∗ 𝑙𝑜𝑜𝑝 (1)

Where:
T = Throughput r = ramp up
u = users requests loop = loop count

Response Time

Response Time is the time it takes to complete a request and send it back to the client. Response time
testing aims to measure how fast a webserver can receive requests from clients. The results of this test
can be seen using the JMeter application in seconds.
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑚𝑠) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑚𝑠) (2)

Request Per Second

Requests Per Second is a measure of the scalability of throughput handled by a system. Testing requests
per second is done by performing a number of services per second from the client which will be sent to
the webserver to determine the performance of a webserver that uses a load balancing system. This aims
to see how many requests can be handled by the webserver running on the docker swarm container
cluster. The results of this test can be seen using the JMeter application in seconds.
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = ℎ𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (ℎ𝑖𝑡𝑠/𝑠) (3)

749 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

Request Loss

Requests Loss are requests sent by the client to the overloaded webserver because the webserver is
unable to accommodate more than the maximum capacity of the webserver so that it cannot be accepted
by the webserver. The request loss parameter can be measured using the JMeter application by
overloading the webserver with requests until the resources on the webserver reach the maximum limit.
RL = u ∗ e (4)
Where:
RL = Requests Loss
u = Users
e = Error Rate

Test Result

Graph of the Test Results of the throughput Test Parameters

Figure 4. Graph of the test results of the throughput test parameters

Based on the test results as shown in Figure 4.1 where in the 1st to 12th test the test value
obtained using the least connection algorithm is 4347.6 / s, while the test value obtained using the round
robin algorithm is smaller, namely 4345.3 / s.

Based on the test results as shown in Figure 4.1, it can be concluded that the more connections or
requests from the user, the greater the resulting throughput. This indicates that the more user
connections, the better the server's ability to serve user requests.

The test results can be seen that the system using the least connection algorithm tends to have a
higher value than the round robin algorithm where the load sharing process is based on the number of
users on the server. Thus, it can reduce queues and can serve more requests so that the throughput
obtained is greater.

Graph of Test Results for Response Time Test Parameters

Based on the test results as shown in Figure 4.2 where in the 1st to 12th test the test value obtained using
the least connection algorithm is 8,236 / ms, while the test value obtained using the round robin
algorithm is smaller, namely 7,861 / ms.

 250.0

 300.0

 350.0

 400.0

Ke-1 Ke-2 Ke-3 Ke-4 Ke-5 Ke-6 Ke-7 Ke-8 Ke-9 Ke-10 Ke-11 Ke-12

Testing

Result

Test Throughput (second)

Least Connection Round Robin

750 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

Figure 5. Graph of test results for response time test parameters

From the results of the response time testing carried out, the average response time value obtained
tends to increase along with the increase in the throughput value obtained, the greater the throughput
value obtained during testing, the time it takes for a server cluster to send an http response to the client
will be getting slower because the requests are coming more and more.

From the graph shown in Figure 4.2, it can be seen that the smaller response time value is when
the server cluster uses a load balancing system with a round robin algorithm, this is because the resulting
transmission speed and throughput have better results than the least connection algorithm.

Comparison Chart of Load Balancer Accuracy

Figure 6. Accuracy percentage graph

Based on the total test results of all parameters, the accuracy value obtained using the least
connection algorithm is 4.53%, while the error accuracy value obtained using the round robin algorithm
is smaller, namely 3.00%.

From Figure 4.3 it can be seen that the loading of incoming requests can be divided by the server
server to the three available worker servers. In round robin load balancing the load sharing is evenly
divided into three servers, while at the least load balancing connection the load sharing is divided based
on the least active connections. There is a difference in the percentage level of accuracy up to 1.46%
between testing using the round robin algorithm and testing the least connection. It can be seen in Figure
4.3 that the load balancing system with the round robin algorithm has a better performance in
distributing the load.

CONCLUSION

Based on the results of this study, the application of the hap Roxy load balancer method using the least
connection algorithm resulted in an accuracy rate of 95.47%, while testing using the round robin
algorithm was able to produce a greater level of accuracy, namely 97%.

0

5000

10000

15000

Ke-1 Ke-2 Ke-3 Ke-4 Ke-5 Ke-6 Ke-7 Ke-8 Ke-9 Ke-10 Ke-11 Ke-12

Testing

Result

Response Time (ms)

Least Connection Round Robin

95.47%

97%

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

Accuracy Percentage

Least Connection dengan Round Robin

Round Robin Least Connection

751 |MARISCHA ELVENY A Tutorial: Load Balancers in A Container Technology System Using Docker

Swarms on A Single Board Computer Cluster

REFERENCES

Adiputra, F. (2015). Containers and dockers: virtualization techniques for managing multiple web
applications. Simantec Journal, 4(3), 167-176.

Bik, Fadhulloh Romadlon., Asmunin. 2017. Docker Implementation For Management of Multiple Web
Applications. Journal of Informatics Management, 7(2), 46 - 50.

Novia, I. (2019). Load Balancer Implementation With Lightweight Virtualization Using Docker For Video
On Demand Services. E-Proceeding of Engineering, 6(1), 802-809.

Kahanwal, B., Singh, T.P. (2012). The Distributed Computing Paradigms: P2P, Grid, Cluster, Cloud, and
Jungle. International Journal of Latest Research in Science and Technology, 1(2), 183-187.

Kaur, K., & Rai, A.K. (2014). A Comparative Analysis: Grid, Cluster and Cloud Computing. International
Journal of Advanced Research in Computer and Communication Engineering, 3(3), 5730- 5734.

Tanjung, P.K. (2017). Implementation and Analysis of Computer Cluster System Using Docker
Virtualization. e-Proceeding of Engineering, 4(3), 3548.

Moilanen, M. (2018). Deploying an Application using Docker and Kubernetes. Thesis, Oulu University of
Applied Sciences, Isandia.

Ruest, D., & Ruest, N. (2009). Virtualization a Beginner's Guide: McGraw Hill. English.
Prime, Cape. (2017). Implementation and Analysis of Computer Clustering System Using Docker

Virtualization, Journal, Telkom University, Bandung.
Primary, Rivaldy Arif. (2018). Implementation of a Cluster Webserver Using Load Balancing Methods on

Docker, Lxc, and Lxd Containers. e-Proceeding of Engineering, 5(3), 5028.
Son, Ridho Habi., & Sugeng, W. 2016. Implementation of Server Clusters on the Raspberry Pi Using the

Load Balancing Method. Journal of Education and Informatics Research (JEPIN).
Shinde, S.S., & Chavan, A.R. (2014). Isolation of Mangiferin from Different Varieties of Mangifera Indica

Dried Leaves. International Journal of Scientific and Engineering Research, 5(6), 928-934.

