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ABSTRACT 

The aim of present analysis is to obtain inverse Laplace-Carson integral transform formula 

with various condition and to obtain the solution of linear fractional differential equation. 

Illustrative example is given to demonstrate the validity, efficiency and applicability of the 

presented method. The solution obtained by the proposed method are in complete 

agreement with the solution available in the literature. 
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1. INTRODUCTION 

A scientific field known by the name of fractional calculus is considered to be as old as its 

counterpart called traditional or classical calculus. The former field is mostly about finding 

the derivatives and integrals of mathematical processes with arbitrary order whereas the 

traditional calculus does not enjoy such high degree of freedom. A tremendous growth has 

been observed in research work carried out in the field of fractional calculus. Large number 

of publications and new research journals based upon mathematical problems being studied 

in this field are the major interests of scholars [1–3]. Many such examples have been 

encountered in the past and in recent literature. For example, Abro in [4] has investigated 

the thermo-diffusion effects on unsteady-free convection flow, via fractional operator of 

Atangana-Baleanu for the governing mathematical equations in the presence of magnetic 

field. Various other mathematical models have been redefined in the framework of fractional 

calculus such as [5–12] and most of the references cited therein. Mathematicians, engineers 

and physicists cannot deny the fact that finding exact solutions for fractional order 

dynamical systems is practically impossible. To get an exact solution for the fractional order 

dynamical systems, integral transforms play an important role. The most popular and 

frequently used integral transform are Laplace transform followed by others including the 
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Fourier transform, Sumudu transform, Hankel transform, Mellin transform, Natural 

transform, Shehu transform, Elzaki transform, Aboodh transform, and the Mohand 

transform [13]. There is one more integral transform called the Laplace-Carson technique 

which, to the best of the authors’ knowledge, has not been tested for getting the solutions of 

initial value problems defined by the Caputo operator. Thus, the present study is dedicated 

towards this goal. The theory of Laplace transform is referred to as operational calculus and 

now it becomes an essential part of the mathematical background which is required for 

engineers, mathematicians, physicists and other scientists. These methods provide an 

effective and easy means for the solution of many problems which are arising in the various 

fields of science and engineering. It is an important tool for solving ODEs and FDEs and has 

enjoyed much success in this realm. In the literature survey, there are various integral 

transforms which are extensively used in astronomy, physics as well as in engineering field. 

The integral transform method is also a useful method to solve the differential equations.  

Laplace Transforms (Sneddon [14]):  

Let F(z) be a function of z specified for z > 0. Then the Laplace transform of F(z), denoted by 

L{F(z)},  

L[ F(z)] = ∫ f(z). e−sz. dz,

∞

0

                                                                                                                    (1.1) 

where we assume at present that the parameter s is real. Later it will be found useful to 

consider s complex. Laplace transform of F(z) is said to exist if the integral (i.e., eqn. no. 1.1) 

converges for some value of s; otherwise, it does not exist. 

Mittag-Leffler function:  

In the year 1903, the great Swedish mathematician Gosta Mittag-Leffler [15], introduced the 

function  

𝐸𝛼(𝑧) = ∑
𝑧𝑛

𝛤(𝛼𝑛 + 1)
,                                                                                                                         (1.2)

∞

𝑛=0

 

where z is a complex variable and  Γ(s) is a Gamma function, 𝛼 ≥ 0. The Mittag- Leffler 

function naturally occurs as the solution of fractional order differential equations or 

fractional order integral equations. In 1905, Wiman [16], studied the generalization of 𝐸𝛼(𝑧). 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑛

𝛤(𝛼𝑛 + 𝛽)
 , (𝛼, 𝛽 ∈   𝐶 ; 𝑅𝑒(𝛼) > 0, 𝑅𝑒(𝛽) > 0).                                              (1.3)

∞

𝑛=0

 

which is known as Wiman’s function or Generalized Mittag-Leffler function. 
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In order to perceive the main ambit of this research article, it is significant to know some 

basic information about non-integer order calculus and also some knowledge about the 

Laplace-Carson transform. In this regard, some relevant concepts are given below.  

Definition 1 [17] The Laplace-Carson integral transform for a piecewise continuous function 

g(t) with exponential order P is defined over the set of functions: 

A = {𝑔(𝑡): ∃𝑀 , 𝑎1𝑎2 > 0, |𝑔(𝑡)| < 𝑀 𝑒𝑥𝑝 (
|𝑡|

𝑎𝑖
) , 𝑖𝑓 𝑡 ∈  (−1)𝑖  × [0, ∞]},                     (1.4)                  

via the given integral 

𝐿𝐶 [𝑔 (𝑡)] = 𝐺 (𝑝) = 𝑝 ∫ 𝑒𝑥𝑝 (−𝑝𝑡) 𝑔 (𝑡) 𝑑𝑡 = 𝑝 𝐿 {𝑔 (𝑡)},      
∞

0

                                            (1.5) 

where L shows the Laplace transform. 

Inverse Laplace-Carson Transform 

Now, we give the proof of Theorem 1-3 which are useful for finding the inverse Laplace-

Carson transform 

Theorem 1: 

If 𝜇, 𝜎 > 0, 𝑚 ∈ 𝑅, |𝑚| < 𝑝𝜇, then we have the inverse Laplace − Carson transform formula 

𝐿𝐶−1 [
𝑝𝜇−𝜎+1

𝑝𝜇 + 𝑚
]  =   [𝑡𝜎−1 𝐸𝜇,𝜎 (−𝑚𝑡𝜇  )]                                                                                       (1.6) 

Proof: -  

First, we take Laplace transform on the R.H.S of equation (1.6) and then applying equation 

(1.3), to get  

𝐿𝐶 [𝑡𝜎−1 𝐸𝜇,𝜎 (−𝑚𝑡𝜇  )] = 𝑝 ∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡𝜎−1  ∑
(−𝑚𝑡𝜇)𝑘

𝛤(𝑘𝜇 + 𝜎)
 𝑑𝑡

∞

𝑘=0

 

 

                                                   = 𝑝 ∑
(−𝑚)𝑘

𝛤(𝑘𝜇 + 𝜎)
 ∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡(𝜎+ 𝜇𝑘)−1

∞

𝑘=0

 𝑑𝑡 

 

                                   = 𝑝 ∑
(−𝑚)𝑘

𝛤(𝑘𝜇 + 𝜎)
 
𝛤(𝑘𝜇 + 𝜎)

𝑝𝜎+ 𝜇𝑘

∞

𝑘=0
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            =
1

𝑝𝜎−1
∑ (

−𝑚

𝑝𝜇
)

𝑘

 

∞

𝑘=0

 

 

 

          =
𝑝𝜇− 𝜎+1

𝑝𝜇 + 𝑚
 , |

𝑚

𝑝𝜇
| < 1 

Then, the inverse Laplace-Carson transform is given by  

𝐿𝐶−1 [
𝑝𝜇−𝜎+1

𝑝𝜇 + 𝑚
]  =   [𝑡𝜎−1 𝐸𝜇,𝜎 (−𝑚𝑡𝜇  )]                 

The proof is complete. 

Theorem 2: 

If 𝜇 ≥ 𝜎 > 0, 𝑚 ∈ 𝑅 and |m| <
𝑝𝜇− 𝜎

𝑚
  then the inverse Laplace-Carson transform formula  

LC−1 [
p1−σ(n+1)

(pμ−σ + m)n+1
]  = [tμ(n+1)−1 ∑

(−m)k (n+k
k

)

Γk(μ − σ) + (n + 1)μ
tk(μ−σ) 

∞

k=0

]                               (1.7) 

Proof: -  

Similarly, to the proof of theorem 1, we take the Laplace transform of the right-hand side of 

equation (1.7) we get 

𝐿𝐶 [𝑡𝜇(𝑛+1)−1 ∑
(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

𝛤𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇
𝑡𝑘(𝜇−𝜎) 

∞

𝑘=0

] 

 

= 𝑝 ∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡𝜇(𝑛+1)−1  ∑
(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

𝛤𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇
𝑡𝑘(𝜇−𝜎)  𝑑𝑡

∞

𝑘=0

 

 

= 𝑝 ∑
(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

Γk(μ − σ) + (𝑛 + 1)𝜇
∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡(𝜇𝑛+𝑘𝜇−𝑘𝜎+𝜇)−1  𝑑𝑡

∞

𝑘=0
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=
1

𝑝(n+1)𝜇−1
 ∑ (

n + k

k
) (

−m

pμ−σ
)

k

 

∞

𝑘=0

 

 

=
𝑝1−𝜎(𝑛+1)

(𝑝𝜇−𝜎 + 𝑚)𝑛+1
 

Then the inverse Laplace-Carson transform is given by 

𝐿𝐶−1 [
𝑝1−𝜎(𝑛+1)

(𝑝𝜇−𝜎 + 𝑚)𝑛+1
]  = [𝑡𝜇(𝑛+1)−1 ∑

(−𝑚)𝑘 (𝑛+𝑘
𝑘

)

𝛤𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇
𝑡𝑘(𝜇−𝜎) 

∞

𝑘=0

] 

The proof is complete. 

 

Theorem 3: 

If 𝜇 ≥ 𝜎, 𝜇 > 𝜌, 𝑚 ∈ 𝑅, |𝑚| < 𝑝𝜇−𝜎 and |
𝑙𝑝−𝜎

𝑝𝜇−𝜎+𝑚
| < 1 then we have inverse Laplace-Carson 

transform formula  

𝐿𝐶−1 [
𝑝𝜌−𝜎+1

𝑝𝜇−𝜎 + 𝑚 + 𝑙𝑝−𝜎
]  = [𝑡𝜇−𝜌−1 ∑ ∑

(−𝑙)𝑛(−𝑚)𝑘 (𝑛+𝑘
𝑘

)

𝛤(𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇 − 𝜌)
𝑡𝑘(𝜇−𝜎)+𝑛𝜇 

∞

𝑘=0

∞

𝑛=0

]    (1.9) 

 

Proof: -  

We take the Laplace-Carson transform on the right-hand side of equation (1.9), by using the 

definition of gamma function and using series expansion, we get 

𝐿𝐶 [𝑡𝜇−𝜌−1 ∑ ∑
(−𝑙)𝑛(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

𝛤(𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇 − 𝜌)
𝑡𝑘(𝜇−𝜎)+𝑛𝜇 

∞

𝑘=0

∞

𝑛=0

]   

 

= 𝑝 ∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡𝜇−𝜌−1  ∑ ∑
(−𝑙)𝑛(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

Γ(k(μ − σ) + (n + 1)μ − ρ)
𝑡𝑘(𝜇−𝜎)+𝑛𝜇 

∞

𝑘=0

∞

𝑛=0

𝑑𝑡 

 

= 𝑝 ∑ ∑
(−𝑙)𝑛(−𝑚)𝑘 (𝑛+𝑘

𝑘
)

Γ(k(μ − σ) + (n + 1)μ − ρ)
∫ 𝑒−𝑝𝑡

∞

𝑜

 𝑡(𝑘𝜇−𝑘𝜎+𝑛𝜇+𝜇−𝜌)−1 

∞

𝑘=0

∞

𝑛=0

𝑑𝑡 
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= ∑
(−𝑙)𝑛

𝑝(1+𝑛)𝜇−𝜌−1

∞

𝑛=0

1

(1 +
𝑚

𝑝𝜇−𝜎
)

𝑛+1                

 

 

 

=
𝑝(𝜌−𝜎+1)

(𝑝𝜇−𝜎 + 𝑚)
∑ [

−𝑙𝑝−𝜎

(𝑝𝜇−𝜎 + 𝑚)
]

𝑛∞

𝑛=0

  

 

=
𝑝(𝜌−𝜎+1)

(𝑝𝜇−𝜎 + 𝑚 + 𝑙𝑝−𝜎)
 

Then, the inverse Laplace-Carson transform is given by 

𝐿𝐶−1 [
𝑝𝜌−𝜎+1

𝑝𝜇−𝜎 + 𝑚 + 𝑙𝑝−𝜎
]  = [𝑡𝜇−𝜌−1 ∑ ∑

(−𝑙)𝑛(−𝑚)𝑘 (𝑛+𝑘
𝑘

)

𝛤(𝑘(𝜇 − 𝜎) + (𝑛 + 1)𝜇 − 𝜌)
𝑡𝑘(𝜇−𝜎)+𝑛𝜇 

∞

𝑘=0

∞

𝑛=0

]  

The proof is complete. 

Illustrative example: 

In this section, we shall illustrate the applicability of the inverse fractional Laplace-Carson 

transform method to some of the linear differential equations. 

Example  

Consider the following linear fractional initial value problem (Odibat et al.2008)), 

𝐷 
𝜇 𝐶 g (t) = g (t) +1, 0 < 𝜇 ≤ 1                                                                                                            (2.0) 

subject to initial condition g (0) = 0, has the solution 

     𝑡𝜇+1𝐸𝜇,𝜇+1(𝑡𝜇) 

Applying the Laplace-Carson transform to both sides of the equations (2.0), and using 

example 1 from P. Kumar & S. Qureshi [18][page no.62, eqn. 15], we get 

LC [ 𝐷 
𝛼  𝐶 𝑔 (𝑡)] = LC [𝑔 (𝑡)] + LC [1] 

𝑝𝜇𝐺 (𝑝) = 𝐺 (𝑝) + 1 
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(𝑝𝜇 − 1) 𝐺 (𝑝) = 1 

                                            𝐺 (𝑝) =  
1

𝑝𝜇 − 1
                                                                                            (2.1) 

Now, by using the result of theorem 1 and taking the inverse Laplace-Carson on both side of 

equation (2.1), and by putting 𝜎 = 𝜇 + 1 & 𝑚 = −1 in theorem 1, we get 

 

𝐿𝐶−1 [
𝑝𝜇−(𝜇+1)+1

𝑝𝜇−1
] = 𝑡𝜇+1−1𝐸𝜇,𝜇+1(𝑡𝜇) 

Therefore, the exact solution of the problem can be obtained as 

𝑔(𝑡) =  𝑡𝜇𝐸𝜇,𝜇+1(𝑡𝜇) 

Conclusion: 

In this theorem, a new method called the inverse fractional Laplace-Carson transform 

method have been successfully applied to linear fractional differential equation. We proved 

three theorems related to this method. The resolution of some example shows that the 

inverse Laplace-Carson transform method is more powerful and efficient for finding exact 

solutions of linear fractional differential equations.  
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