
Ilkogretim Online - Elementary Education Online, 2021; Vol 20 (Issue 6): pp. 5989-5994
http://ilkogretim-online.org

 doi: 10.17051/ilkonline.2021.06.580

5989 | Sachin Tyagi Music Application improvement

Music Application improvement

Sachin Tyagi, Department of Computer Science & Engineering RDEC, Ghaziabad

Vikas Gupta, Department of Computer Science & Engineering RDEC, Ghaziabad,
Email: vikas09@gmail.com

Abstract
The abstract for a music application in React JS and Firebase would describe a software
solution for streaming and sharing music that utilizes the React JavaScript library for
the frontend and Firebase as the backend service. The application would provide users
with access to a vast music library and allow them to create personalized playlists,
share music with others, and discover new artists and genres. The React framework
would enable a responsive and intuitive user interface, while Firebase's real-time
database and authentication services would provide a secure and scalable backend
infrastructure. The application would leverage modern web technologies to provide a
seamless and enjoyable music streaming experience for users across different devices
and platforms.
Keywords: Music, Firebase, infrastructure

INTRODUCTION
First, let's start with creating a new ReactJS project. You can do this by running the
following command in your terminal:

luanpx create-react-app music-app
Next, you'll need to set up Firebase for your project. To do this, go to the Firebase
Console, create a new project and follow the instructions to set up Firebase for your
project
You'll need to install the Firebase SDK in your project by running the following
command:

npm install firebase
Once Firebase is set up, you can start building your music application. Here are some
features you can include:
a) Authentication: You can allow users to create accounts and sign in using Firebase

Authentication. This will give you access to user information and allow you to
restrict access to certain parts of your application.

b) Database: You can use the Firebase Realtime Database to store information about
your music tracks, playlists, and user preferences. You can also use Firebase Storage
to store audio files.

c) Search: You can use the Firebase Firestore to search for tracks based on various
criteria, such as artist, album, and genre.

d) Music Player: You can use a music player library like React- Player to play audio files
stored in Firebase Storage.

e) User Interface: You can create a user interface that allows users to search for
tracks, create playlists, and play music. You can use ReactJS to create reusable
components like buttons, inputs, and lists.

mailto:vikas09@gmail.com

5990 | Sachin Tyagi Music Application improvement

f) Mobile App: You can use Firebase Cloud Messaging to send push notifications to
users when new tracks are added to the app or when their playlists are updated.

BACKGROUND
A music application in ReactJS and Firebase can have a variety of features and
functionalities. Here's an overview of the background and key components of a music
application built using ReactJS and Firebase:
a. Authentication - Firebase Authentication provides secure user authentication and

authorization, allowing users to create accounts and sign into your music application.
With authentication, users can also save and retrieve their preferences, playlists, and
other data.

b. Realtime Database - Firebase Realtime Database is a cloud-hosted database that
allows developers to store and sync data in real-time. You can use this to store
information about your music tracks, playlists, and user preferences.

c. Cloud Storage - Firebase Cloud Storage is a cloud-based storage solution that allows
you to store and serve user-generated content such as audio files, album artwork, and
user photos.

d. Search - Firebase Firestore is a flexible, scalable, and cloud-hosted NoSQL database
that enables you to search and retrieve data efficiently. You can use this to search for
music.

e. Music Player - There are several music player libraries available for ReactJS such as
React- Player, HowlerJS, and SoundJS. You can use these libraries to create a music
player that can play audio files stored in Firebase Cloud Storage.

f. User Interface - ReactJS is a powerful JavaScript library for building user interfaces.
You can create a visually appealing and responsive user interface using ReactJS and
styling libraries such as Material-UI, Bootstrap, or Tailwind CSS.

g. Mobile App - Firebase Cloud Messaging is a service that enables you to send push
notifications to users when new tracks are added to the app or when their playlists
are updated. You can also use Firebase Hosting to host your music application and
Firebase Analytics to track user behavior and engagement.
Overall, a music application in ReactJS and Firebase can provide a seamless user
experience with real-time updates, easy-to-use authentication, and a responsive user
interface.

METHODOLOGY
1. Plan and Design - Before starting the development process, create a plan and design

for your music application. This should include wireframes, mockups, and a user
flow that outlines the different screens and functionalities of your application:

2. Set up Firebase - Set up Firebase in your project by creating a new Firebase project,
adding Firebase to your ReactJS application, and configuring Firebase
Authentication, Firebase Realtime Database, and Firebase Cloud Storage. This will
allow you to store and retrieve user data and media files.

3. Build the UI - Use ReactJS and CSS to build the user interface of your music
application. This should include components such as the header, footer, search bar,
track list, playlist, and music player. Use CSS frameworks such as Material-UI,
Bootstrap, or Tailwind CSS to create a visually appealing and responsive UI.

4. Implement Firebase Functionality - Use Firebase SDK to implement the necessary
functionalities of your music application, such as authentication, data storage, and
media playback. For example, you can use Firebase Authentication to authenticate

5991 | Sachin Tyagi Music Application improvement

users and Firebase.
5. Test and Debug - Test your music application thoroughly to ensure that it functions

as expected. Use debugging tools such as the React DevTools and Firebase console
to identify and fix any issues.

6. Deploy and Monitor - Deploy your music application using Firebase Hosting and
monitor its performance using Firebase Analytics. This will allow you to track user
behavior, identify areas for improvement, and make updates as necessary.

By following this methodology, you can build a scalable, maintainable, and efficient
music application using ReactJS, Firebase, and CSS.

IMPLEMENTATION
To implement a music application in ReactJS and Firebase, you can follow these steps:
1. Set up a new ReactJS project using a tool like Create React App. You can do this by

running the command npx create-react-app my- music-app.
2. Add Firebase to your project by following the instructions on the Firebase website.

You will need to create a new Firebase project, add Firebase to your ReactJS
application, and configure Firebase Authentication, Firebase Realtime Database, and
Firebase Cloud Storage.

3. Create the user interface of your music application using ReactJS and CSS. This
should include components such as the header, footer, search bar, track list, playlist,
and music player. You can use CSS frameworks such as Material-UI, Bootstrap, or
Tailwind CSS to style your UI.

4. Implement Firebase functionality in your music application. This can include:
• Authentication: Allow users to sign up, log in, and log out using Firebase

Authentication.
• Realtime Database: Store user preferences, playlists, and other data using Firebase

Realtime Database.
• Cloud Storage: Store and retrieve media files such as audio tracks and album artwork

using Firebase Cloud Storage.
5. Implement music playback functionality using a ReactJS music player library like

React-Player, HowlerJS, or SoundJS. You can retrieve audio files from Firebase Cloud
Storage and play them using the music player library.

6. Test your music application thoroughly to ensure that it functions as expected. Use
debugging tools such as the React DevTools and Firebase console to identify and fix
any issues

7. Deploy your music application using Firebase Hosting and monitor its performance
using Firebase Analytics.

PROPOSED APPROACH
Plan and Design - Begin by planning and designing your music application. This should
include wireframes, mockups, and a user flow that outlines the different screens and
functionalities of your application. This will help you to identify the features and
functionalities you need to include in your application.
1. Set up Firebase - Set up Firebase in your project by creating a new Firebase project,

adding Firebase to your ReactJS application, and configuring Firebase
Authentication, Firebase Realtime Database, and Firebase Cloud Storage. This will
allow you to store and retrieve user data and media files.

2. Build the UI - Use ReactJS and CSS to build the user interface of your music
application. This should include components such as the header, footer, search bar,

5992 | Sachin Tyagi Music Application improvement

track list, playlist, and music player. Use CSS frameworks such as Material-UI,
Bootstrap, or Tailwind CSS to create a visually appealing and responsive UI.

3. Implement Firebase Functionality - Use Firebase SDK to implement the necessary
functionalities of your music application, such as authentication, data storage, and
media playback. For example, you can use Firebase Authentication to authenticate
users and Firebase Realtime Database to store user preferences and playlists.

4. Implement Music Playback - Use a ReactJS music player library like React-Player,
HowlerJS, or SoundJS to implement music playback functionality in your
application. You can retrieve audio files from Firebase Cloud Storage and play them
using the music player library

5. Test and Debug - Test your music application thoroughly to ensure that it functions
as expected. Use debugging tools such as the React DevTools and Firebase console
to identify and fix any issues.

6. Deploy and Monitor - Deploy your music application using Firebase Hosting and
monitor its performance using Firebase Analytics. This will allow you to track user
behavior, identify areas for improvement, and make updates as necessary.

By following this approach, you can build a scalable, maintainable, and efficient music
application using ReactJS and Firebase.

Figure 1. E-R diagram of our music application

User: This table stores information about each registered user, such as their name,
email, and password.
Playlist: This table stores information about each playlist created by a user, such as the
playlist name and description.
Track: This table stores information about each track in the application, such as the

5993 | Sachin Tyagi Music Application improvement

track name, artist, and album.
PlaylistTrack: This is a many-to-many relationship table that connects the Playlist and
Track tables. It stores information about which tracks are included in playlist.
1. UserPlaylist: This is a many-to-many relationship table that connects the User and

Playlist tables. It stores information about which playlists are owned by which users.
2. Wide range of job opportunities: Online job portals typically have a vast database of

job openings from different industries and locations. This allows job.
This ER diagram represents a basic data model for a music application that allows users
to create playlists and add tracks to them. Additional tables and relationships can be
added to accommodate more complex features and functionality

RESULTS
The result of building a music application in ReactJS and Firebase is a scalable, efficient,
and modern music application that allows users to create and manage their playlists
and play music from a vast library of tracks.
Some specific features and functionalities of the music application may include:
• User authentication and authorization to access personalized content and features.
• User-generated playlists and the ability to add, remove, and reorder tracks in a

playlist.
• Search functionality to find and browse through the library of tracks.
• Music playback functionality that allows users to play, pause, skip, and rewind tracks,

and adjust the volume.
• Real-time updates that reflect changes made to the data immediately in the user

interface.
• Cloud storage to store media files such as audio tracks and album artwork,

eliminating the need for local storage on the user's device.
• Responsive and visually appealing user interface that provides an intuitive user

experience
With these features and functionalities, a music application built in ReactJS and Firebase
can provide a seamless and enjoyable user experience, allowing users to easily manage
and play their favorite music from a centralized platform.

EVALUATION & FUTURE LEARNING
When evaluating a music app built in ReactJS and Firebase, it's important to consider the
following aspects:
User Experience: The user experience is critical in any application, especially a music
app. The user interface should be intuitive, easy to navigate, and responsive to user
input.
Functionality: The app should provide all the necessary features to meet the needs of
the users. This includes search functionality, playlist creation and management, music
playback, and real-time updates
Scalability: As the user base grows, the app should be able to handle increased traffic
and data storage needs without sacrificing performance or functionality.
Security: The app should be secure and protect user data from unauthorized access or
hacking.

FUTURE LEARNING
To improve your skills in building music apps with ReactJS and Firebase, there are
several things you can do:

5994 | Sachin Tyagi Music Application improvement

Keep up with updates and new features: Both ReactJS and Firebase are constantly
evolving, so it's important to keep up with new updates and features. This can be done
by reading documentation, attending webinars, and participating in online
communities.
Learn from others: There are many resources available online, including tutorials, blog
posts, and video courses that can help you improve your skills and learn new
techniques.
Practice, Practice, Practice: The best way to improve your skills is to practice building
music apps using ReactJS and Firebase. This can be done by working on personal
projects or contributing to open-source projects.
Attend Hackathons: Participating in hackathons is a great way to put your skills to the
test and collaborate with other developers. It also provides an opportunity to learn from
experienced developers and network with peers in the industry.
By continuously learning and practicing, you can improve your skills in building music
apps with ReactJS and Firebase and stay up to date with the latest developments in the
field.

CONCLUSION
In conclusion, building a music application in ReactJS and Firebase provides a modern,
scalable, and efficient solution for storing and retrieving user data and media files.
Firebase's authentication, real-time database, and cloud storage capabilities, combined
with ReactJS's component- based architecture, make it an ideal platform for building
music applications.
A music app built in ReactJS and Firebase can provide users with a seamless and
enjoyable experience, allowing them to create and manage playlists, search and play
tracks, and receive real-time updates of changes made to the data.
To improve your skills in building music apps with ReactJS and Firebase, it's important
to keep up with updates and new features, learn from others, practice building personal
projects, and attend hackathons.
By doing so, you can continue to develop your skills and stay up to date with the latest
developments in the field.
Overall, building a music app in ReactJS and Firebase can be a rewarding experience
that provides a valuable and enjoyable service to users.

REFERENCES
1. S.D. Drake, “Embracing Next-Generation Mobile Platforms to Solve Business

Problems”, a Sybase White Paper, Oct 2008.
http://www.sybase.com/detail?id=1060699. Accessed 7/4/2009.

2. Gartner Inc. http://www.gartner.com/it/page.jsp?id=910112. Accessed 7/4/2009.
3. Wall Street Journal. http://online.wsj.com/article/SB12247776388426281 5.html,

Accessed 7/4/2009.
4. N.R. Boyer, S. Langevin, and A. Gaspar, “Self-direction & constructivism in

programming education”. In Proceedings of the 9th ACM SIGITE Conference on
information Technology Education (SIGITE 08), ACM, New York, NY, Oct. 2008, pp.
89- 94.

http://www.sybase.com/detail?id=1060699
http://www.gartner.com/it/page.jsp?id=910112
http://online.wsj.com/article/SB12247776388426281

