
Ilkogretim Online - Elementary Education Online, 2021; Vol 20 (Issue 3): pp. 5003-5015
http://ilkogretim-online.org
doi: 10.17051/ilkonline.2021.03.513

5003 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

A Communication Outline For VR And AR Uses

Mr. Sandip Sitaram Deore Research at Swami Vivekanand University, Sagar (M.P)

Dr.Arvind Chauhan Professor In Fine Art at Swami Vivekanand University, Sagar (M.P)

Abstract

The implementation of interaction techniques in Virtual Reality (VR) and Augmented

Reality (AR) applications still poses a considerable challenge for developers. There are few

tools, conventions and standards to rely on. This paper presents the design of a framework

aimed at the separation of interaction- specific and domain-specific functionality of VR/AR

applications. The goal is to alleviate the develop- ment of interaction techniques by

providing generic, re-usable components.

Keywords: Virtual Reality, Augmented Reality, UIMS, human computer interaction.

1 Introduction

Interaction paradigms for VR and AR have not un- dergone a comparable process of

standardization that resulted in today’s common WIMP paradigm and the standard user

interface (UI) elements for the desktop [1]. One explanation for this is the highly heteroge-

neous nature of VR and AR setups.

As a consequence, there is a high degree of in- compatibility between the various setups.

VR/AR ap- plications are therefore designed and developed with one particular setup in

mind and are rarely ported to another. This is sometimes due to the high costs of adjusting

the code to the differences between setups. Additionally, different environments present

some- times radical differences in the interaction possibili- ties offered to the end user,

which introduces incom- patibilities in the operation of the system next to in- compatibilities

in the application code.

This paper proposes a framework that aims at sep- arating the domain-specific functionality

of a VR/AR application from the interaction-specific functionality. It introduces an additional

layer that handles all input data from the user. The obtained data is processed in a bipartite

data-flow network made of components that together implement the interaction.

2 Related Work

The separation of interaction-specific and domain- specific functionality has been advocated

in the work related to User Interface Management Sys- tems (UIMS) [2]. A UIMS mediates

the interac- tion between the user and an application by satisfy- ing requests from both

user and application. This is achieved through a three-tiered model: the lowest level isolates

physical devices, which are then man- aged in the middle layer as logical devices. On the top

level, an interaction management system contains descriptions of the dialogue sequences

that describe the interaction between user and application [2].

5004 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

Research on UIMS has been extensive. Among the more closely related work is that of Jacob

et al. [3], in which state diagrams and Petri-nets are used to model interaction in VR

environments. In [4] the develop- ment and adaptation of reality-based interfaces based on

the token and constraint paradigm [5] is discussed. The author advocates dynamically

changing execu- tion environments and concurrent interaction across various devices.

Another direction is explored in [6], in which users of ubiquitous AR systems are allowed to

adapt the system to their preferences using a concept called “in- teraction management”.

Similarly, Jacob addresses the runtime adjustment of the interface between UI and

application to improve accessibility [7].

In the Alpha UIMS the separation between interaction-specific and domain-specific

functionality is supported but not enforced by a component-based design, in which different

“agents” communicate with each other, implementing various parts of the applica- tion [8].

These agents are organized through a “di- alogue”, specified using a separate language called

“slang”.

Many models have been developed for the design, prototyping and evaluation of user

interfaces, both for common desktop environments, as well as more com- plex settings. In [9],

the authors present an approach wherein concrete interaction objects are abstracted into

counterparts that capture only generic features. This approach allows no run-time

adaptation and is aimed at the evaluation of virtual user interfaces.

Navarre et al. developed a formal description for interaction in virtual environments that

addresses the variety of available input devices [10].

2.1 Scope of this work

This paper addresses several issues where the re- lated work falls short, as described next.

Meyers et al. identify two reasons for the lack of success of UIMS [1]. First of all, the often

strict separation between interaction-specific and domain- specific functionality has often

been perceived as a hindrance rather than an aid to the design and im- plementation tasks.

Secondly, UIMS were originally aimed at resolving the issues of user interface design for the

emerging desktop systems, but through the standardization of the user interface elements

in that environment, the need for UIMS disappeared. It is unlikely that a similar

standardization of user inter- face elements will occur in VR/AR, which warrants the

renewed investigation into UIMS for VR/AR ap- plications.

Many interaction techniques exist in VR/AR today, both for generic as well as for very specific

tasks [11]. Unfortunately, very little approaches exist that ab- stract them into generic, re-

usable components. Most of the techniques available today are implemented as part of more

complex applications that are tied to par- ticular hardware configurations. The abstraction

of interaction techniques into generic, re-usable compo- nents not only allows the creation of

a whole library of interaction techniques [12, 13], but also a way to eas- ily replace one

technique with another. This makes it possible to easily replace techniques unsuitable for a

given setup, as well as to compare and evaluate the use of different techniques in a particular

scenario. Additionally, it allows the users to specify preferences about which techniques they

want to use.

Additionally, specific interaction techniques can be tightly related to a particular domain,

5005 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

rendering it much more difficult – and maybe even counter- intuitive – to generalize them.

Such interaction techniques might take harm from a separation from the domain-specific

functionality instead of profiting from it. The application developer should be able to decide

which functionality is domain-specific and which is not, effectively allowing for the

framework to adjust to the developer instead of forcing the re- verse.

Interaction in VR and AR applications comprises both discrete and continuous, sequential

and concur- rent events [3]. Most approaches found in literature cope with this difference

by using two separate mod- els, such as Petri-nets for the continuous aspects and state

diagrams for the discrete aspects [3]. The use of two different models introduces additional

complex- ity in the description of interaction, which makes the adoption of such systems

difficult.

In [14] the authors point out that there are indi- rectly related aspects that may be

significant for the performance of interaction techniques. Especially the feedback of the

system is important for the successful use of interaction techniques. This stands in contrast

with the general concept of strictly separating input and output functionality, as advocated

by many UIMS implementations.

3 Architecture

The proposed architecture consists of a framework that allows the application developer to

“request” in- teraction capabilities for the end user, e.g. “the user must be able to change the

position of this object”. When the application is deployed, the framework must

accommodate all the requests of the application. To achieve this, a data-flow network is

constructed, such that the requested functionality can be obtained. The data-flow network

consists of various objects and sub-nets that are taken (possibly automatically) from a

predefined library or provided by the application de- veloper – or even the maintainer of the

system.

The following sections describe the elements of the proposed framework architecture in

more detail.

3.1 Data Representation

All data processed by the components of the data- flow network is represented by subclasses

of the ab- stract class Value. This class defines only the most basic requirements for a Value

object: name A human-readable string describing this value. The purpose is to add semantic

information to the value, such that a user can understand what this value represents. For

example, the object representing the vertical position of a mouse pointer would be called

“vertical mouse posi- tion”. value The actual value. This is undefined in the ab- stract class.

compatibility operator Verifies if two Value objects are semantically compatible.

The compatibility of two Value objects is defined as the expressive equivalence of the two

beyond sim- ple type-compatibility. For instance, a float value with a range between 0.0 and

1.0 is not compatible with a value with a range between -1.0 and 1.0, since it can- not express

values between -1.0 and 0.0. This same value is though compatible with a value of range [0.0,

0.5]. Furthermore, two lists of Value objects are de- fined as being compatible if every

element with index i of the first list is compatible with the corresponding

5006 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

element at index i in the second list.Concrete subclasses of the Value class are expected to

extend the abstract base class adding any attributes necessary to properly characterize the

value repre- sented. This characterization is important to assert the compatibility of the

values generated by one com- ponent and required by another component. The at- tributes

of a value are stored together with the actual data in order to allow access to these attributes

any- time during the processing of the data.

3.2 Data-flow Network

The whole process of interaction is modeled using a data-flow network that represents the

flow of data from (logical) input devices to either interaction tech- nique components or call-

back functions of the appli- cation. This approach was chosen, because this con- cept is

widely used in many tool kits and is therefore familiar to many developers. The data-flow is

orga- nized in a directed, bipartite graph consisting of two classes of objects: processing

objects and connection objects.

Processing objects represent any kind of operation that uses data as input and/or output.

Every logical input device or interaction component is represented as a special processing

object in the data-flow graph. This class of objects is characterized by the following features:

identifier The identifier describes the functionality of the object. For components

implementing interaction techniques, this identifier specifies what interaction is

implemented. This is used when the requirements of an application are matched with the

elements of the data-flow net- work. For input devices, this identifier specifies that the object

is an input device. input signature The input signature specifies a list of inputs required by

this object. Every item in this list is semantically seen as one single input, which can either

be a Value object or a list of Value objects. The order of the elements in the input signature

describes the order in which the data has to be provided to the execute method (described

shortly). output signature The output signature specifies what outputs the technique

provides. It is repre- sented in the same fashion as the input signature. execute method This

method causes the execution of the functionality of this object. It takes as ar- gument a list

as defined by the input signature and computes a list consisting of the values as specified

by the output signature. These values can then be accessed using the output retrieval

method. output retrieval method This method returns either a list of values matching the

output signature specification or NIL, if no output is available. This distinction is crucial,

because a connection object will only transfer data from its sources to its destinations if all

the sources are able to provide data. For convenience reasons, a second output retrieval

method could be added, that only returns specified outputs instead of returning all of them.

Connection objects manage the flow of data be- tween processing objects. A connection

object reads data from one or more processing objects and for- wards this data to the

execution method of one or more processing objects. The following attributes characterize

a connection object: sources A list of processing objects from which the connection object

reads data using their output retrieval method. The processing objects that provide data to

a connection object are called the “sources” of the connection object. destinations A list of

processing objects to which the connection object passes the read data call- ing their

execution methods. The processing ob- jects that receive data from a connection object are

called the “destinations” of the connection object. mapping The mapping defines how the

5007 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

outputs of the sources are mapped onto the inputs of the destinations. Every output of all

sources is re- lated to zero or more inputs of all destinations. A mapping is not required to

be either injective nor surjective: inputs from any source can be re- layed to one or more

destinations, or none at all. This is useful e.g. for the conversion of discrete to continuous

events (see Section 3.6).

Please note that the data passed through by a con- nection object is in no way modified by

the connec- tion object. Data is only processed by a processing object. If the output of a

processing object is not com- patible with the required input of another processing object,

they cannot be connected directly through a connection object. Also, a connection object

does not perform any kind of buffering. If such functionality is required, special processing

objects that implement it must be used.

3.3 Logical Input Devices

There are various subclasses of processing objects, derived from the abstract class PObject.

Physical in- put devices are abstracted into logical devices, which are represented by

subclasses of the Device class, an abstract subclass of the PObject class. This approach has

been chosen to offer an easy means of extending the range of supported devices. To add

support for a new device, it is sufficient to create a new subclass of the Device class that

implements the necessary driver-calls. By creating implementations that sup- port

hardware-abstraction libraries like VRPN [15], a wide range of devices can easily be added

to the list of supported hardware.

The abstract Device class does not extend the func- tionality of the abstract PObject class.

Its existence is purely semantic, to group all logical device imple- mentations in a separate

branch of the class hierarchy. The input signature of such objects is usually empty, since

instances of this class are supposed to provide data from the actual hardware they represent.

The out- put signature, instead, provides the data. It is impor- tant to note that the way a

device presents its data is ambiguous. A six degree of freedom tracking device can present

its data as a list of six separate values, as only one tuple (consisting of six values), as two

tuples (e.g. each containing three value), etc. It is though advisable to adopt a convention for

the way devices present their data to the framework. Such a conven- tion can be used to

enforce certain aspects onto the networks created, allowing the quantitative distinc- tion

between analogous network configurations (see discussion in Section 5).

3.4 Interaction Techniques

Another group of subclasses of the PObject class are those implementing basic interaction

techniques, like selection and manipulation.

Using a data-flow network to represent the inter- action allows to represent complex

interaction tech- niques as sub-nets of more basic techniques. In- teraction techniques are

often categorized using tax- onomies, whereby tasks are divided into multiple sub- tasks [14,

11]. This structure can be entirely repre- sented in the data-flow network, enhancing the re-

usability of the sub-components of a complex interac- tion technique and facilitating the design

of new, com- plex techniques. The composition of complex tech- niques is discussed in more

detail in Section 4.3.

3.5 Callback Functions

5008 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

To give the application developer free choice about how to implement specific functionality, the

presented framework offers the possibility to register callback functions that are called by

special processing objects in the data-flow graph. In this case, the application specifies a

callback function and an input signature. A special processing object is then instantiated,

that takes over the specified input signature and passes the input data it receives to the given

callback function.

3.6 Discrete and Continuous, Sequential and Concurrent Events

In [3] the authors highlight that interaction in VR/AR applications often comprises both

discrete and continuous events, sequential or concurrent. The proposed model supports all

these modalities through the special characteristics of the connection objects. Connection

objects always pass their input data to their destination processing objects – if the data is

available. This models continuous events, in the case that all the sources of the connection

object are continuously providing data. Alternatively, discrete events are achieved, if at least

one of the sources only provides data at discrete moments in time.

The modeling of interaction in a data-flow network also supports the description of

concurrent events, as there is no limitation to how many separate paths the network can

contain. One instance can be made of an arbitrary number of sub-graphs.

3.7 Feedback to the User

In order to ensure usability, interaction techniques must provide sufficient feedback to the

user. The ef- fects of user interaction should be reflected in the state of the application with as

little delay as possible. To allow this, the presented architecture offers process- ing objects

access to the application’s scene graph. Special processing objects that provide lists of scene-

graph objects can be made available e.g. by the appli- cation. This enables not only the

complete implemen- tation of an interaction technique outside the applica- tion itself, but it

also allows interaction techniques to directly influence objects seen by the user, providing

immediate feedback.

3.8 Graph Representation

The composition of interaction techniques and the arrangement of data-flow graphs can be

expressed both programmatically using the provided API, but it can also be represented

graphically as a directed, bi- partite graph. This has the advantage that a developer can define

the interaction-specific functionality that is not provided directly by the framework in the

same fashion as the rest of the application. Alternatively, end users can adjust the

interaction network easily to match their preferences using a visual editor to edit the data-

flow graph.

The creation of a suitable data-flow network that satisfies the requirements of a given

application can be done once for all users of the system by the system maintainer, but it is

possible that there are multiple possible configurations. Therefore, a user might be able to

choose between equal alternatives. These choices can consists of pre-defined configura-

tions for the less experienced users, but more experi- enced users can also edit the data-flow

graph directly, using a visual editor.

5009 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

3.9 Network Execution Model

For the execution of a given data-flow network, a notification mechanism is introduced. A

processing object sends a notification to all connection objects reading from it, signaling the

availability of data. Ev- ery connection object maintains a status array describ- ing the

availability of data for each of its sources. Whenever a notification arrives, the connection

ob- ject marks the corresponding field in the status array as true. Only if all fields are true,

it resets the array and passes on the data.

4 Implementing User Interaction

This section discusses the implementation of user interaction techniques using the proposed

framework.

4.1 Notation Conventions and Basic Constructs

The easiest way to represent the described data- flow networks is through diagrams. In the

following sections, the data-flow network examples discussed will be represented

graphically as bipartite, directed graphs. Processing objects will be represented by ovals,

while connection objects will be represented as thin rectangles. The text inside an oval

describes the type (between pointy brackets) and/or the name of the object (between

double quotes). An excep- tion to this rule is made for “conditional filters” (see Section

4.1.1). The text inside ovals depicting these objects represents the condition under which

the re- ceived data is forwarded. A connection object’s map- ping is represented graphically

through the vertical correspondence of inbound and outbound arrows.

The following sections discuss some basic con- structs often used in data-flow networks

as presented here.

4.1.1 Conditional Connections

It can be useful to create connections between pro- cessing objects such that they are only

active under certain conditions. To achieve this, special processing objects called “conditional

filters” are used in com- bination with the particular characteristics of connec- tion objects.

Conditional filters are special processing objects that take a given input and test it on a

given condition. Only if the condition is met, the input is passed on as output. Adding such

an object to the sources of a given connection object results in stalling the connec- tion as

long as the condition of the conditional filter is not met – even if all other inputs are available.

4.1.2 State Transitions

Interaction techniques often distinguish different states. Depending of the current state,

the actions of the user have different meanings. In terms of the presented data-flow

networks, states are used to ac- tivate and deactivate certain connections. To model this,

another special processing object type is used: “buffers”.

Buffers are special processing objects that remem- ber the last received input and provide

it continuously as output. Using a buffer object as the state variable, it is possible to

implement state-persistence. Further- more, connecting a buffer to a conditional filter can

be used to render connections active only for certain states.

5010 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

4.1.3 Event Conversion

Discrete events can easily be converted to continuous events using a buffering objects to

remember the last data obtained and output it continuously. In similar fashion, continuous

events can be converted into dis- crete events in two ways. The first option is to use

conditional filters to restrict the continuous output. The second option is to use the

characteristic of a con- nection object to only forward data once all its sources have data

available. This way, the continuous output is blocked until another, discrete output is

available.

4.2 Examples

The following sections present some examples for the implementation of common

interaction techniques using the proposed framework.

4.2.1 Pointing Selection with a Wand

A wand consists of a 6DoF tracker with some buttons attached. One of the most popular class

of selection techniques used in conjunction with a wand is “point- ing selection”: a virtual ray

extends from the front tip of the wand and objects intersecting with this ray are selected

when the user presses a button.

To model this behaviour in a data-flow network, the wand is represented as a logical

device from a subclass of the Device class. This object must pro- vide the position and

orientation of the wand, as well as the state of all the attached buttons.

Another component must implement the selection mechanism itself. This component

requires three in- puts: a position from where the ray is cast, a direction into which the ray is

projected and a list of objects that can be selected. Using this data, it is possible to com- pute

ray-intersection with all selectable objects and thus produce a new list of selected objects.

In this example, the wand is a continuous source of data, which means that it constantly

emits the current position and orientation of the tracker, as well as the state of all the

buttons. Yet, the actual “act” of select- ing an object is a discrete event that happens when the

user presses a certain button. To model this, the continuous status-report of the button are

converted into discrete events. This is achieved using a condi- tional filter. In this case, the

criterion is that the status of the button must be “pressed”, syntactically defined through a

symbolic constant.

Finally, a selection should be persistent, until the user changes the selection (e.g. selecting

another ob- ject, or “de-selecting” through a selection of “noth- ing”). A buffering object is

used to store the results of the selection. Figure 1 displays the resulting data- flow network.

5011 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

Figure 1: Pointing selection with a wand.

4.2.2 Complex Example: Positioning using a Data-glove

This example discusses a common interaction tech- nique used in combination with a data-

glove input de- vice. The user selects a virtual object by “grabbing” it. The selected object

will remain selected as long as the gesture is retained. As long as the object is selected, its

position relative to the data-glove is pre- served: the user moves the object by moving the

hand wearing the glove. Please note that for the sake of brevity, rotation is left out in this

example, although it could easily be added, as described at the end of this section.

The described interaction can be decomposed into three parts: first, the selection is

determined; second, the relative position of the object in respect to the data-glove is

calculated upon selection; finally, the object is moved as long as the object is selected.

An object is selected if it is within a given thresh- old from the glove’s position when the

user performs the gesture “grabbing”. It would be a mistake to sim- ply couple the proximity

calculation to this gesture recognition, because the selection should only occur once. As soon

as an object is selected, the interaction paradigms change: movement of the glove is reflected

in movement of the selected object, while approach- ing another object must not result in

the selection of that object as well.

To achieve this, a state-transition is introduced. When the gesture performed by the user

changes from “not grabbing” to “grabbing”, the state changes from “nothing selected” to

“selection made”. This re- flects the conflictual nature of continuous and discrete events: a

gesture is a continuous characteristic of the data-glove, while the transition from one

particular gesture to another is a discrete event.

In addition to the discrete event of selection, there is another discrete event caused by the

user “releas- ing” the selected object. For the sake of argument we shall say that the user

signifies the end of the operation with a particular “release” gesture. If and only if the

“release” gesture is performed after the “grab” gesture, the state changes again from “selec-

tion made” to “nothing selected”. In this case, the coupling between the object’s and the

glove’s posi- tion must be interrupted.

Since the state is described by the currently per- formed gesture, it is sufficient to store

the gesture in a buffer object to maintain the current state of the inter- action.

The selection is computed by a dedicated filtering object that takes as inputs a list of

<Buffer>
"Selected
Objects"

List of objects

<Pointing Selection>

=="pressed"?

<List>
"Selectable

Objects"

<Device>
"Wand"

Position

D
i

re c
ti o n

L
is

t
o
f

o
b
je

ct
s

Butto
n 1

5012 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

selectable objects, a position and a proximity threshold.

The second step is achieved using another filtering object. This object takes a list of objects

and a posi- tion in space and returns a list containing the distance vectors of each object to

the given position. Note that the implementation of the previously mentioned proximity

selection object can make use of another instance of this same class to perform its

calculations. The details of this are left out for brevity.

The distance vectors are then added to the glove’s position to determine the new position

of each object. This is then applied in the final part, using another processing object that

takes a list of objects and a list of positions and moves the objects to the given posi- tions.

Note the use of an object representing an empty list in Figure 2. This object is needed to

“reset” the buffer containing the list of selected objects when the user “releases” the

selection. If this was omitted, the processing object that performs the positioning could

receive the previous selection as input param- eter while the proximity selection is still busy

calcu- lating a newly performed selection.

Support for orienting the selected object can be added by supplying a processing object

capable of ap- plying a given orientation to a given object, as well as means to calculate and

store the relative orientation of the selected object – in respect to the glove – upon

L
is

t
o
f

o
b
je

c
ts

G
e

s t
u r

e

G
e

s
t
u

r
e

5013 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

Figure 2: Object positioning using a data-glove.

selection. All these operations are analogous to those performed for the relative positioning

of the object.

4.3 Composite Interaction Techniques

The composition of interaction techniques to achieve more complex functionality can be ap-

proached from two opposite directions. The applica- tion developer can either create the

complex function- ality inside the application, requiring the underlying framework to

provide the simpler components used. Alternatively, the application can request the complex

interaction functionality entirely from the framework. In the latter case, appropriate data-flow

networks must be put in place to accommodate the requirements of the application. A new

processing object can imple- ment the complex technique by relaying parts (or all) of its

inputs to the other objects, thereby encapsu- lating a sub-graph. This allows to organize

complex data-flow graphs into smaller sub-graphs, facilitating their maintenance.

For example, consider the scaling of an object. To keep this example simple, we will only

consider uni- form scaling. This functionality can be implemented by means of a widget: a

simple sphere is drawn at a certain position and distance relative to the cen- ter of the

object. By manipulating the position of this sphere, the user determines the scaling factor:

if the distance between the sphere and the center is in- creased, the object becomes bigger;

if the distance is decreased, the object becomes smaller. Obviously, the movement of the

sphere must be constrained to one axis.

The implementation of this functionality can be achieved through the application itself.

The appli- cation specifies the sphere as an object that can be moved (constrained to a

certain axis relative to the ob- ject). It further needs to register a callback function to be

notified whenever the user moves the sphere. This callback function then queries the new

position of the sphere and calculates the distance to the object’s cen- ter and consequently

the scaling factor, finally apply- ing the scaling.

Alternatively, the application can simply require the functionality for an object to be

scaled. In this case, the framework mimics the same functionality as described above: a

scaling component scales a given object by a given factor. One component calculates the

distance between the default position of the sphere and the current one, in order to

determine the scal- ing factor. Another component transforms the posi- tion of the sphere

from world-coordinates into coor- dinates relative to the object to be scaled. Finally, a

constrained positioning component allows the sphere to be moved along a given axis. The

sphere object is part of the functionality and is therefore defined and created in the

framework, relieving the applica- tion programmer of this task.

5 Conclusions and Future Work

The presented work is aimed at solving the issues described in Section 2.1. The abstraction

of interac- tion techniques into a network of components allows for re-usability of these

components to implement new techniques. The separation between interaction- specific and

domain-specific functionality is left open, allowing the application developer to choose how

to implement which functionality. Continuous and dis- crete events are described using the

same concept of a bipartite data-flow graph. Concurrent event handling is possible through

po
sit
io

ns

P o s it i
o n

5014 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

parallel paths in the graph. Sys- tem feedback is achieved directly through the data- flow

graph, allowing for shorter delays and more com- plete implementation of interaction-specific

function- ality within the concept of the graph. An additional, graphical language is provided

next to an API, allow- ing for both a programmatic as well as a graphical interface to the

description of user interaction.

A first prototype of the presented framework has been implemented. Various hardware

setups are in place to test the adaptability of the framework to vary- ing configurations. A

number of test cases are being developed to verify the applicability of the presented

abstraction to various application scenarios.

Furthermore, the performance of the architecture must comply with the requirements of

typical VR/AR applications. Existing interaction techniques will be implemented using these

paradigms to both assess the feasibility of the presented approach, as well as to cre- ate a

library of components to aid the development of new applications and interaction

techniques.

The possibility to objectively compare different data-flow networks using defined criteria

will be re- searched. A measure to qualitatively distinguish mul- tiple solutions for the

accommodation of the requests of an application with a given set of input devices rep- resents

the first step towards the automatic generation of such data-flow networks.

6 Acknowledgments

This work was carried out in the context of the Vir- tual Laboratory for e-Science (VL-e)

project1. This project is supported by a BSIK grant from the Dutch Ministry of Education,

Culture and Science (OC&W) and is part of the ICT Innovation program of the Min- istry of

Economic Affairs (EZ).

References

[1] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of user inter-

face software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28, 2000.

[2] James J. Thomas and Griffith Hamlin. Graphical input interaction technique (GIIT).

SIGGRAPH Comput. Graph., 17(1):5–30, 1983.

[3] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. A software model and

speci- fication language for non-WIMP user interfaces. ACM Trans. Comput.-Hum. Interact.,

6(1):1–46, 1999.

[4] Orit Shaer. A framework for building reality- based interfaces for wireless-grid

applications. In CHI ’05: CHI ’05 extended abstracts on Hu- man factors in computing

systems, pages 1128– 1129, New York, NY, USA, 2005. ACM Press.

[5] Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Ja- cob. Token+constraint systems for tangible

in- teraction with digital information. ACM Trans. Comput.-Hum. Interact., 12(1):81–118,

2005.

[6] Otmar Hilliges, Christian Sandor, and Gudrun Klinker. Interactive prototyping for

ubiquitous augmented reality user interfaces. In IUI ’06: Proceedings of the 11th

international confer- ence on Intelligent user interfaces, pages 285– 287, New York, NY,

USA, 2006. ACM Press.

5015 | Mr. Sandip Sitaram Deore A Communication Outline For VR And AR Uses

[7] Robert J. K. Jacob. Open syntax: improving ac- cess for all users. In WUAUC’01:

Proceedings of the 2001 EC/NSF workshop on Universal ac- cessibility of ubiquitous

computing, pages 84– 89, New York, NY, USA, 2001. ACM Press.

[8] Daniel Klein. Developing applications with the Alpha UIMS. interactions, 2(4):48–65,

1995.

[9] Jean Vanderdonckt, Chow Kwok Chieu, Lau- rent Bouillon, and Daniela Trevisan. Model-

based design, generation, and evaluation of vir- tual user interfaces. In Web3D ’04:

Proceedings of the ninth international conference on 3D Web technology, pages 51–60,

New York, NY, USA, 2004. ACM Press.

[10] David Navarre, Philippe Palanque, Rèmi Bastide, Amèlie Schyn, Marco Winckler,

Lu- ciana Porcher Nedel, and Carla Maria Dal Sasso Freitas. A formal description of

multimodal in- teraction techniques for immersive virtual re- ality applications. In

Human-Computer Inter- action - INTERACT 2005: IFIP TC13 Inter- national Conference,

pages 170–183. Springer- Verlag GmbH, 2005.

[11] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 3D User Inter- faces:

Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,

USA, 2004.

[12] Mark Green and Joe Lo. The Grappl 3D in- teraction technique library. In VRST ’04: Pro-

ceedings of the ACM symposium on Virtual real- ity software and technology, pages 16–23,

New York, NY, USA, 2004. ACM Press.

[13] Wai Leng Lee and Mark Green. Automatic lay- out for 3D user interfaces construction. In

VR- CIA ’06: Proceedings of the 2006 ACM interna- tional conference on Virtual reality

continuum and its applications, pages 113–120, New York, NY, USA, 2006. ACM Press.

[14] Doug A. Bowman and Larry F. Hodges. For- malizing the design, evaluation, and

application of interaction techniques for immersive virtual environments. Journal of

Visual Languages and Computing, 10:37–53, 1999.

[15] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano, and

Aron T. Helser. VRPN: a device-independent, network-transparent VR peripheral system.

In VRST ’01: Proceedings of the ACM sympo- sium on Virtual reality software and

technology, pages 55–61, New York, NY, USA, 2001. ACM Press.

