Open Access and Peer-reviewed
Home Journal Issues Guide for Authors Editorial Board Aims & Scope About Journal News & Announcements


Research Article 


Early detection of skin cancer using deep learning approach

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero.

Abstract
Skin cancer is a worldwide epidemic. A computerised instrument allows spotting small shifts to change the skin's functionality in an early stage. This paper utilises Convolutional Neural Network (CNN) to identify skin cancers Theattained results demonstrate that the CNN method can effectively identify melanoma and benign cases from X-ray images. This work can help doctors to diagnose cancer in the skin in an initial stage and treat it successfully.

Key words: Skin cancer;image classification;Deep learning; CNN; Machine learning


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Ibrahim AlShourbaji
Articles by Ghassan Samara
Articles by Hussam abu Munshar
Articles by Waleed A Zogaan
Articles by Faheem A Reegu
Articles by Shadab alam
Articles by Muhammad Saidu Aliero
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. Early detection of skin cancer using deep learning approach. EEO. 2021; 20(5): 3880-3884. doi:10.17051/ilkonline.2021.05.424


Web Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. Early detection of skin cancer using deep learning approach. http://ilkogretim-online.org//?mno=68255 [Access: April 09, 2021]. doi:10.17051/ilkonline.2021.05.424


AMA (American Medical Association) Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. Early detection of skin cancer using deep learning approach. EEO. 2021; 20(5): 3880-3884. doi:10.17051/ilkonline.2021.05.424



Vancouver/ICMJE Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. Early detection of skin cancer using deep learning approach. EEO. (2021), [cited April 09, 2021]; 20(5): 3880-3884. doi:10.17051/ilkonline.2021.05.424



Harvard Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero (2021) Early detection of skin cancer using deep learning approach. EEO, 20 (5), 3880-3884. doi:10.17051/ilkonline.2021.05.424



Turabian Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. 2021. Early detection of skin cancer using deep learning approach. Elementary Education Online, 20 (5), 3880-3884. doi:10.17051/ilkonline.2021.05.424



Chicago Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. "Early detection of skin cancer using deep learning approach." Elementary Education Online 20 (2021), 3880-3884. doi:10.17051/ilkonline.2021.05.424



MLA (The Modern Language Association) Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero. "Early detection of skin cancer using deep learning approach." Elementary Education Online 20.5 (2021), 3880-3884. Print. doi:10.17051/ilkonline.2021.05.424



APA (American Psychological Association) Style

Ibrahim AlShourbaji, Ghassan Samara, Hussam abu Munshar, Waleed A Zogaan, Faheem A Reegu, Shadab alam, Muhammad Saidu Aliero (2021) Early detection of skin cancer using deep learning approach. Elementary Education Online, 20 (5), 3880-3884. doi:10.17051/ilkonline.2021.05.424








AUTHOR LOGIN

REVIEWER LOGIN

Indexed
&
Abstracted


Indexing

İlköğretim Online (IOO) - Elementary Education Online (EEO) is indexed in:


ABOUT JOURNAL
POLICIES
STATEMENTS